
An Iterative Approach to Synthesize Business Process Templates from Compliance Rules

Ahmed Awada, Rajeev Goréc, Zhe Houc, James Thomsonc, Matthias Weidlichb

aFaculty of Computers and Information, Cairo University, Egypt
bHasso Plattner Institute, University of Potsdam, Germany

cSchool of Computer Science, The Australian National University, Australia

Abstract

Companies have to adhere to compliance requirements. The compliance analysis of business operations is typically a joint effort of
business experts and compliance experts. Those experts need to create a common understanding of business processes to effectively
conduct compliance management. In this paper, we present a technique that aims at supporting this process. We argue that process
templates generated out of compliance requirements provide a basis for negotiation among business and compliance experts. We
introduce a semi automated and iterative approach to the synthesis of such process templates from compliance requirements expressed
in Linear Temporal Logic (LTL). We show how generic constraints related to business process execution are incorporated and present
criteria that point at underspecification. Further, we outline how such underspecification may be resolved to iteratively build up a
complete specification. For the synthesis, we leverage existing work on process mining and process restructuring. However, our
approach is not limited to the control-flow perspective, but also considers direct and indirect data-flow dependencies. Finally, we
elaborate on the application of the derived process templates and present an implementation of our approach.

Keywords: Process synthesis, Analysis of business process compliance specification, Process mining

1. Introduction

Compliance management has received increasing attention
in recent years. Numerous financial scandals in large companies
have fostered increasing attention on compliance management
and has led to legislation initiatives such as SOX [1]. When
aiming to control business operations, compliance checking
focuses on many different aspects of a business process, for
example compliance of business requirements may restrict the
order in which activities are executed. Often constraints on the
execution of activities are also based on the data context, and
dedicated data values may require the execution, or the absence
of any execution, of an activity. There may even be restrictions
on role resolution to realize a separation of duty.

Driven by these trends, numerous approaches have been
presented to address compliance management of business pro-
cesses, and they can be classified as follows. First, compliance
rules may guide the design of a business process [2, 3] so that
compliance is ensured by design since compliance violations are
identified in the course of process model creation. Second, exist-
ing process models are verified against compliance rules [4, 5].
Given compliance requirements and a process model as input,
these approaches identify violations on the process model level.

Clearly, addressing compliance during the design of busi-
ness operations has many advantages. Non-compliant processes
are prevented at an early stage of process implementation and
costly post-implementation compliance verification along with

Email addresses: a.gaafar@fci-cu.edu.eg (Ahmed Awad),
Rajeev.Gore@anu.edu.au (Rajeev Goré), zhe.hou@anu.edu.au
(Zhe Hou), jimmy.thomson@anu.edu.au (James Thomson),
matthias.weidlich@hpi.uni-potsdam.de (Matthias Weidlich)

root cause analysis of non-compliance is not needed. In most
cases, process models that are synthesized from compliance
rules cannot be directly used for implementing a business pro-
cess. Instead, they should be seen as a blueprint that is used as a
basis for negotiation between business and compliance experts.
Hence, we refer to these process models as process templates in
order to emphasize that further refinements are needed to actu-
ally implement the business process [6]. While this approach
has been advocated by other authors, e.g., [2, 7, 8, 9], exist-
ing approaches are limited when it comes to data-dependent
compliance requirements.

In this paper, we build upon on our previous work [10] and
present an iterative approach to the synthesis of compliant pro-
cess templates. We start with a set of compliance rules expressed
in Linear Temporal Logic (LTL). Hence, we do not require the
definition of explicit points in time as in [2, 7], but focus on
relative execution order dependencies. Further, we also consider
data flow dependencies between activity executions. This is
neglected in [8], whereas other work requires the pattern-based
coupling of control flow routing and data conditions [9]. These
rules are then enriched with general constraints related to busi-
ness process execution. To reach the ultimate goal of generating
a process template and hence to have a common understanding
of the compliance requirements, we go through a set of steps
that might be repeated several times. First, we check whether
the compliance requirements are satisfiable. If the compliance
requirements are not satisfiable, we analyze the reasons for this
inconsistency. If the requirements are satisfiable, we generate
all possible execution sequences (traces) and check them for
underspecification. If requirements are well-specified, a process
template is generated from these traces. At the time a specific

Preprint submitted to Elsevier March 2, 2012

step fails, e.g., the requirements are inconsistent, our approach
suggests some remedies, the requirements are updated by the
user and a new iteration starts. Finally, we also illustrate how
generated templates are applied during process design and how
the template generation may identify inconsistencies and open
questions. Hence, the template guides further refinements of
the process model and the compliance requirements. To evalu-
ate the applicability of our approach, we present a prototypical
implementation.

This paper revises and extends our initial approach presented
in [10] in various directions. In this paper, we show how analysis
is conducted if the compliance rules are inconsistent, an aspect
neglected in our previous work. Further, we now use a theorem
proving approach to analyze the generated traces and extend the
trace criteria to be verified. That is, we explicitly verify correct-
ness of the traces regarding the order of execution as induced by
data dependencies. In addition, our new approach comes with
resolution strategies when the trace correctness criteria are not
satisfied. Finally, we present a novel approach for the actual
synthesis, which incorporates techniques from the field of pro-
cess restructuring. Compared to the synthesis presented in [10],
it has the advantage that we synthesize well-structured process
models and that we take indirect data dependencies (between
activities that do not follow each other directly) into account. As
such, our contribution is a comprehensive approach to process
design grounded in compliance rules.

The remainder of this paper is structured as follows. The
next section introduces preliminaries for our work, such as the
applied formalism. Section 3 gives an overview of our approach
of synthesizing process templates from a given set of compliance
rules and discusses the LTL encoding. Section 4 elaborates on
how to detect inconsistencies if the obtained LTL specification is
not satisfiable. The generation of traces along with their analysis
is presented in Section 5. Section 6 shows how to cope with
issues that are detected during the analysis of traces. Then,
we discuss the actual synthesis of a process template and its
application in Section 7. A prototypical implementation of our
approach is presented in Section 8. Finally, Section 10 reviews
related work, before we conclude in Section 11.

2. Preliminaries

This section gives preliminaries for our work. Section 2.1
clarifies our notion of execution semantics. Section 2.2 discusses
the reason we choose LTL instead of other logics. Section 2.3
presents LTL as the logic used in this paper. Section 2.4 sum-
marizes existing work on generating a behavioral model from a
given set of LTL formulae.

2.1. Process Runs as Linear Sequences
In this paper, we rely on trace semantics for process models.

An execution sequence σ of a process model is referred to as a
process run or trace – a finite and discrete linear sequence of
states σ : s0, s1, . . . , sn with a start state s0 and an end state
sn. Clearly1, a process model as well as a set of compliance

1Attention! We don’t understand this sentence.

requirements allow for many conforming traces. Each state of a
trace is labeled with propositions that refer to actions and results.
Actions are the driving force of a trace and refer to the execution
of business activities. This, in turn, may effect or be constrained
by results, which relate to data values of the business process.
As an example, think of an activity ‘risk analysis’ (ra) and a
data object ‘risk’. The action that represents the execution of this
activity may have the result of setting the value of the data object
to ‘high’ or ‘low’. The execution of another activity, i.e., another
action, may be allowed to happen solely if a certain result, e.g.,
the object has been set to ‘high’, occurred. Both actions and
results are represented by Boolean propositions at each state.
For instance, proposition ra being ‘true’ at a state si means that
the action, i.e., execution of activity ‘risk analysis’, happened
at state si. In contrast, proposition ra being ‘false’ at state si
means that the action did not happen at state si. Given a trace
σ : s0, s1, . . . , sn, we write p ∈ si to indicate that proposition p
is true in state si, for 0 ≤ i ≤ n and p ∈ σ if there is a state si
in σ where p ∈ si, for some 0 ≤ i ≤ n.

We represent an execution sequence as a linear sequence of
states where states are labelled with both actions and results,
and (unlabelled) edges between states represent the temporal
ordering in the sequence.

2.2. A Suitable Logic for Process Modelling
Various logics have been proposed for the purpose of process

modelling. Deontic modalities were used to define policies and
business rules by Padmanabhan et al. [11], similarly, Geodertier
et al. [2, 7] adopted PENELOPE, a deontic logic with temporal
assignments, to enact control-flow-based processes. van der
Aalst et al. [12, 13, 14], on the other hand, developed a declar-
ative workflow management system that uses Linear Temporal
Logic (LTL) [15] to drive the design and execution of processes.

The study of the logic for process modelling is still on-going,
we do not have a conclusion that one is definitely better than the
other. Following our intuition to capture process runs, however,
LTL seems to be a suitable logic to reason about relations of
actions and results in a sequence of executions. First of all, with
the temporal operators, LTL brings about the power to specify
the uncertain order relation between actions. This advantage,
in van der Aalst et al.’s approach, is exploited to declaratively
enact flexible processes, and thus can be considered as an impor-
tant future extension to our approach. Conversely PENELOPE
enforces exact time for events with its temporal assignments,
and consequently fixes the structure of the process. Secondly,
many workflow management systems record process executions
as “event-logs”, which contain the ordering of events in each
process run. Recorded “event-logs” can be used for process
mining, and by adopting machine learning techniques, van der
Aalst et al. have shown that it helps support the design of pro-
cesses by rediscovering patterns from past experience. To this
end, choosing LTL is plausible since it naturally captures the
ordering of events in linear time. Thirdly, by LTL theorem prov-
ing, we will show in Section 2.4 that we can derive all possible
traces from the rules in an LTL specification. This means we
guarantee that our process model generated from the rules are
logically correct and contains all permitted executions described
by the rule with all invalid executions excluded. Finally, there

2

are many versions of Deontic Logics that enables different sets
of axioms [16], it is nontrivial to decide which one is the best
in the process modelling context. There may be missing ax-
ioms that could be useful, or present ones that could be harmful.
Therefore, for simplicity, LTL enables us to encode and reason
about processes under our setting, and also provides us with
possibilities to extend our work in related areas in the future.

Before we had LTL as our underlying logic set in stone, we
considered other logics such as Computation Tree Logic (CTL)
and Propositional Dynamic Logic (PDL). The expressive power
of CTL and LTL is incomparable, there are sentences that can
be expressed in one but not the other. Nevertheless, since the
domain knowledge and rules we define for the process are ac-
tually constraints on all traces, we can just add the universal
path quantifier in the front of every state quantifier to form the
corresponding CTL encoding. In this way, however, the full
expressive power of CTL is unexploited. Even though CTL is
branching, it is hard to utilise the existential path quantifier to
merge all possible paths in one model. That is, to extract all
correct traces, we still have to consider all models in CTL and
the search space is not reduced. Thus CTL does not benefit us
in an obvious way. PDL, as a modal logic, has similar seman-
tics as deontic logic, which in a sense, enables us to describe
what must occur and what may occur. However, eventualities
in temporal logics, which is the key to flexible structured pro-
cesses, are hard to simulate in PDL. Although PDL naturally
supports distinguishing control-flow from data-flow (actions as
programmes, and results as propositions), it does not help to
express the temporal relations that we want to encode.

As a result, we choose LTL as the suitable logic for our ap-
proach, the details of the encoding and other techniques relating
to LTL will be presented in the rest of this paper.

2.3. Linear Temporal Logic
Linear Temporal Logic is a logic specifically designed for

expressing and reasoning about properties of linear sequences of
states. The formulae of LTL are built from atomic propositions
using the connectives of ∨ (or), ∧ (and), ¬ (not) and⇒ (impli-
cation), and the following temporal connectives: X (next), F
(eventually), G (always), U (until) and B (before). There
are two logical constants > (verum) and ⊥ (falsum) which are
always true and always false respectively. The temporal connec-
tives are interpreted as follows:
X ϕ: in the neXt state, ϕ holds
F ϕ: there is some state either now or in the Future where ϕ

holds
G ϕ: in every state Globally from now on, ϕ holds
ϕ U ψ: there is some state, either now or in the future, where ψ

holds, and ϕ holds in every state from now Until that state
ϕ B ψ: Before ψ holds, if it ever does, ϕ must hold.
Note that F ϕ can be defined as > U ϕ and similarly G ϕ
can be defined as ⊥ B ¬ϕ. We apply LTL to encode compli-
ance requirements. Hence, we obtain a set Γ of LTL formulae
expressing the constraints to which compliant traces have to
conform.

2.4. Finding All LTL-Models of a set of LTL Formulae
Given a collection of compliance requirements (constraints)

expressed as a set Γ of LTL-formulae, we try to find a behavioral
model that captures all formula-models, i.e., traces in our setting,
which satisfy Γ. That is, such a structure describes all linear
sequences of states s0, s1, . . . , sn such that Γ is true at s0. Since
Γ may contain eventualities, such as F ϕ or ψ1 U ψ2, ensuring
that Γ is true at s0 may require us to ensure that ϕ or ψ2 is true
eventually at some state si with 0 ≤ i ≤ n. In contrast to model
checking [17] we are not given a single trace, but construct all
traces satisfying the given constraints.

The first step is to determine whether the constraints Γ are
satisfiable. If not, the specification is erroneous since no trace
can conform to the given constraints. The second step is the
creation of the behavioral model that describes all traces.

For both steps, we use a graph-based tableaux method intro-
duced in [18, 19]. In essence, this approach works as follows.
We start by creating a root node containing Γ and proceed in two
phases. First, a finite (cyclic) graph of tableau nodes is created by
applying tableau-expansion rules that capture the semantics of
LTL and by pruning nodes containing local contradictions [18].
Second, once the graph is complete, a reachability algorithm is
used to determine which nodes do not satisfy their eventualities.
These nodes are removed and the reachability algorithm is reap-
plied until no nodes may be removed. The set of formulae Γ is
satisfiable, if and only if the root node has not been removed [18].
Further, the graph created by the tableau algorithm, referred to
as the pseudomodel, describes all possible formula-models, i.e.,
possible traces [18]. We use this pseudomodel to extract possible
traces during our synthesis approach.

In this paper, two types of tableaux methods are used for
different purposes. One is the graph-based method mentioned
above, which is used for extracting traces (cf. Section 5.1). The
other one is the tree-based method with back-jumping, which is
used for analysing the cause of inconsistency (cf. Section 4.2).
Deciding satisfiability in LTL is PSPACE-complete [20], and
the tableaux methods we use are exponential in time. It is also
commonly acknowledged that the time complexity of the model
checking problem in LTL is exponential in the size of the formula
as well [21], so theoretically other methods based on LTL model
checking do not have an advantage over our theorem proving
method in terms of run time.

3. The Basis of the Synthesis Approach

Section 3.1 gives an overview of the synthesis of process
models from a set of compliance rules and introduces an example
set of compliance rules used to illustrate all subsequent steps.
Section 3.2 describes the LTL encoding of the compliance rules
and additional domain knowledge.

3.1. Overview
The process model in Figure 1 visualizes the steps to synthe-

size a process template out of a set of compliance rules. First,
a set of compliance rules is collected and formulated in LTL,
we refer to the set of rules as CR, step A. In order to identify
whether these requirements are consistent and thus a process

3

A : Collect

related

compliance

rules in LTL

B : Add extra

domain

knowledge in

LTL

C : Check LTL

satisfiability ;

generate

pseudomodel

Is there a

pseudomodel?

No

E : Extract

traces

J : Generate

process model

Yes

NoK : Analyze

generated

model

Are there any

descrepencies?

Yes

L : Refine

compliance

rules or domain

knowledge

F : Analyze

traces

Is it possible to generate

a process model?

Yes

No

D : Conduct

inconsistency

analysis

G : Check

implied traces

H : Check

vacuous

satisfiability

Figure 1: Process Synthesis Approach.

template can be synthesized, related domain-specific knowledge
is identified, we refer to domain knowledge as DK, step B. In
Section 3.2 we give details on the LTL encoding of both compli-
ance rules and domain knowledge.

For the conjunction Γ of the LTL formulae in CR and DK,
we verify satisfiability as summarized in Section 2.4, step C. If
Γ is not satisfiable then no trace can be constructed to satisfy
the given LTL formulae. At that point, inconsistency analysis is
conducted, step D, to identify the causes of inconsistency, details
of this step are given in Section 4. Note that all of the three
substeps introduced in Section 4.4 in the inconsistency analysis
(checking domain knowledge, rules, and the conjunction of them
resp.) are conducted in step D. That is, in step C the aim is to
generate a pseudomodel out of the specification. But if the
conjunction of domain knowledge and rules is not satisfiable,
there can be no pseudomodel, thus checking the satisfiability in
step C is not for inconsistency analysis but for deciding whether
the process should go to step D or step E. As discussed in
Section 2.4, since the purpose of the satisfiability checking in
step C and step D is different, we use a graph-based theorem
prover in the former and a tree-based theorem prover in the latter.

On the other hand, If Γ is satisfiable then the satisfiability
checker automatically returns the pseudomodel which is a be-
havioral model of all traces that obey the given constraints. As a
next step, finite traces are extracted from the pseudomodel by
following all choice points and stopping when a trace becomes
cyclic, step E. Having a finite set of traces that satisfy the compli-
ance rules, we check them for some correctness criteria, step F.
Failure of these criteria hints at issues in the specification, so
that a new iteration of the synthesis may be started with refined
compliance rules or adapted domain knowledge. Steps E and F
are discussed in Section 5. In steps G and H, we check whether
it is possible to restore the correctness criteria of the traces. Both
steps are described in Section 6.

If the traces obey the correctness criteria, we use a process
synthesis algorithm to extract a process template, step J. The
synthesized template is then analyzed to identify discrepancies
that stem, e.g., from under-specification, step K, which is basi-
cally a manual step handled by a human expert. Depending on
the result of this analysis, again, a new iteration of the synthesis

may be started. Section 7 describes the template generation step.
Example. We illustrate our approach with an example from

the financial domain. Anti money laundering guidelines [22]
address financial institutes like banks, and define a set of checks
to prevent money transfers with the purpose of financing criminal
actions. We focus on the following guidelines for opening new
bank accounts:
R1: A risk assessment has to be conducted for each ‘open ac-

count’ request.
R2: A due diligence evaluation has to be conducted for each

‘open account’ request.
R3: Before opening an account the risk associated with that ac-

count must be low. Otherwise, the account is not opened.
R4: If due diligence evaluation fails, the client has to be added

to the bank’s black list.

3.2. LTL Encoding
Once the compliance rules have been collected, a behavioral

model that represents all traces conforming to these rules is
created. In order to arrive at such a model, we need to collect
extra domain-specific rules. Much of the domain-specific rules
can be generated automatically from a higher level description.
Such a description needs to be defined by a human expert in the
first place and comprises the following information where 2X is
the set of all subsets of X .
Actions and Goals. The set of all actions is denoted by A. The

set of goal actions G ⊂ A comprises actions that indicate
the completion of a trace. Moreover, we capture contra-
dicting actions that are not allowed to occur together in
one trace in a relation CA : A→ 2A.

Results and Initial Values. The set of all results is denoted by
R, and we define R = {¬r|r ∈ R} as the set of negated
results. The initial values of data objects are defined by
a set IV ⊂ R ∪ R. Similar to contradicting actions, we
capture contradicting results in a relation CR : R→ 2R.

Relation between Actions and Results. The mapping from ac-
tions to sets of results is given as a relation AM : A ×
2R∪R. To reflect the fact that results are caused by actions,
we define results according to their corresponding actions.
That is, for some a ∈ A that has results, we define Ra

4

as the set of results of action a, thus Ra = {r ∈ R :
∃S.(a, S) ∈ AM ∧ r ∈ S or ¬r ∈ S}. It is easy to see
that R is the union of the Ras for the actions a that have
results.

Exclusive Results Set. Mutually exclusive sets of resultsRE is
defined as RE ⊆ 2R which satisfies ∀E ∈ RE, ∀r1, r2 ∈
E s.t. r1 6= r2, r1 and r2 cannot hold jointly in one state.

Based on this information and two additional actions start and
end that represent the initial and final states of a trace (inde-
pendent of any goal states), we derive LTL rules to represent
the domain knowledge according to Table 1. Common process
description languages, e.g., BPMN or EPCs, assume interleav-
ing semantics, which is enforced by formula interleave and
progress. The information on exclusiveness constraints and on
contradicting actions and results yields the formulae mutex and
contra. The formula causality guarantees correct implementa-
tion of dependencies between actions and results. Finally, the
formulae once, final , goals, and initial ensure correct initial-
ization and successful termination of any trace. The conjunction
of all these formulae yields the formula domain, which repre-
sents the domain knowledge.

domain =start ∧G initial ∧ F goals ∧ F end

∧G interleave ∧G progress ∧G mutex

∧G causality ∧G once ∧G contra ∧G final

Example. For our example, an expert first identifies the
following actions and results.
Actions = {ra, edd, og, od, bl}
ra: conduct a risk assessment.

edd: evaluate due-diligence.

og: grant a request to open an account.

od: deny a request to open an account.

bl: blacklist a client.

Results = {ri, rh, rl, ei, ef , ep}
ri: risk assessment is initial.

rh: risk was assessed as high.

rl: risk was assessed as low.

ei: due-diligence evaluation is initial.

ef : due-diligence evaluation failed.

ep: due-diligence evaluation passed.

Note that the results are all descriptive statements, while
the actions refer to activities. Moreover, we introduce positive
representations for the values ‘high’ and ‘low’ of the risk object,
even though both values are opposites. For example, the risk
object has three possible values: high, low, or initial. The same
holds true for the due-diligence object.

Based on these actions and results, the compliance rules
are encoded in LTL. As a process to open a bank account is
considered, the process is assumed to start by receiving such
a request. Therefore, rules R1 and R2, mentioned above, are
interpreted as “A risk assessment has to be conducted” and
“A due diligence evaluation has to be conducted”, respectively.
The third rule is interpreted to mean that the risk associated

with opening an account must be low at the time the request
is granted, rather than at some point in the past. Similarly in
the case when denying the open request, the risk has to be high.
Based on this interpretation the rules are formalized as follows:
R1: A risk assessment has to be conducted.

F ra
“Eventually ra must hold”

R2: A due diligence evaluation has to be conducted.
F edd
“Eventually edd must hold”

R3: The risk associated with opening an account must be low
when the request is granted.
G (og ⇒ rl) ∧G (od⇒ rh)
“Always, og only if rl, and always, od only if rh”

R4: If due diligence evaluation fails, the client has to be added
to the bank’s black list.
G (edd ∧ ef ⇒ F bl)
“Always, edd and ef imply eventually bl”

As a next step, the domain knowledge is defined in more detail.
For instance, the action mapping AM defines ra 7→ {rh, rl}
and ra 7→ {¬ri}. The former says that action ra causes the
risk object to take a concrete value of ‘high’ or ‘low’. The latter
means that ra causes the risk to stop being ‘initial’ by forcing
ri to not hold. Excluding results are defined, e.g., {ri, rl, rh} ∈
RE states that at most one of the propositions ri, rh, rl can hold
at each state. The goal of the process is defined as {og, od} and
the set of initial values {ri, ei} signifies that initially, both risk
and due-diligence objects, are put to an initial, unknown, value.
There are also contradicting actions, {og 7→ {od}, od 7→ {og}},
ensuring that we cannot grant and deny a request within the
same trace.

Based on Table 1, this specification is converted into LTL.
For example, this yields the formula progress = ra ∨ edd ∨
og ∨ od∨ bl ∨ start∨ end. The final set of LTL formulae is the
union of the domain formula and all four formulae representing
the compliance rules.

Given a set of LTL formulae, we apply the technique sum-
marized in Section 2.4 to determine whether the constraints are
satisfiable. If the constraints are unsatisfiable, this indicates an
inconsistent specification. The details of inconsistency detection
is covered in Section 4. On the other hand, if the constraints
are satisfiable, we can obtain a set of traces that represents how
such rules can be fulfilled and these traces are further examined
before a process template is generated.

4. Analysis of Domain Knowledge and Rules Inconsistency

In this section, we describe our approach to discover the
cause of inconsistency in the domain knowledge and compliance
rules expressed in temporal logic. First, related techniques and
definitions are discussed in Section 4.1. Then we present the
details of our approach to find the inconsistent subset of rules in
Section 4.2. If the user wants to further know the exact reason
of inconsistency, we refine the resulting subset to a minimal
unsatisfiable core, as is illustrated in Section 4.3. Finally, we
show how the techniques are incorporated in the business process
synthesis context in Section 4.4.

5

Table 1: The formulae making up the domain knowledge

Constraint Description Formalization

To realize interleaving semantics, the formula interleave ensures that at
most one action can be true, i.e., one activity can be executed, at any state.

interleave(a) = a⇒ (
∧

b∈A\{a} ¬b))
interleave =

∧
a∈A interleave(a)

The formula progress guarantees that at least one action occurs at each state. progress =
∨

a∈A a

The mutual exclusion constraints given in RE are enforced by the formula
mutex, i.e., exclusive results cannot be true at the same time.

mutex(S) =
∧

a,b∈S, a 6=b ¬(a ∧ b)
mutex =

∧
S∈RE mutex(S)

Knowledge on contradicting actions or results is taken into account by the
formulae, con and conRes.

con(a) = a⇒ G
∧

b∈CA(a) ¬b
conRes(r) = r ⇒ G

∧
s∈CR(r) ¬s

contra =
∧

a∈A con(a) ∧
∧

r∈R conRes(r)

To implement the relation between actions and results, formula cau1 states
that for every entry (a, S) ∈ AM the action a must cause at least one of the
results in S. Formula cau2 states that for every result r, that result can only
be changed by one of the actions which can cause it.

cau1(a, S) = a⇒
∨

r∈S r
cau2(r) = r ⇒ (X

∨
(a,S)∈AM, {r,¬r}∩S 6=∅ a) B ¬r

causality =
∧

(a,S)∈AM cau1(a, S) ∧
∧

r∈R∪R cau2(r)

The formula once enforces that all actions other than end occur at most once,
in order to avoid infinite behavior. The formula final enforces that end
persists forever to represent the process end.

once(a) = a⇒ X G ¬a
once =

∧
a∈A\{end} once(a)

final = end⇒ G end

The formula goals is used to require that eventually the outcome of the
process is determined, while inital ensures correct initial values for all
objects.

goals =
∨

g∈G g

initial = start⇒
∧

v∈IV v

4.1. Related Methods and Definitions
Various approaches attempt to find the explanations for the

inconsistency of a set Γ of given formulae [23, 24, 25, 26]. Most
of them focus on extracting minimal unsatisfiable cores of Γ,
since they narrow down the reason that causes inconsistency.
Although a vast amount of work has been done to investigate
the minimal unsatisfiability problem in propositional logic, the
same problem for LTL has not drawn much attention. Hantry
and Hacid proposed a conflict-driven tableau depth-first-search
for LTL, the complexity of their approach is theoretically EX-
PTIME [25]. Schuppan demonstrated approaches to compute
unsatisfiable cores of LTL formulae from various aspects [24],
but there was no requirement to find a minimal one.

There are several different notions of unsatisfiable cores in
the literature, here we adopt a series of definitions by Lynce
et al. [27], which are appropriate under the context of business
process modelling.

Definition 1 (Unsatisfiable Core). Given a set Γ of formulae,
which is the LTL encoding of domain knowledge DK and com-
pliance rules CR, a set UC of formulae is an unsatisfiable core
for Γ iff UC ⊆ Γ and UC is unsatisfiable.

Thus an unsatisfiable core can be any subset of Γ that is unsat-
isfiable. That is, the largest unsatisfiable core is Γ itself, and in
the worst case it can be the minimal unsatisfiable core as well,
the definition of which is shown as follows.

Definition 2 (Minimal Unsatisfiable Core). An unsatisfiable
core UC for a given set Γ of formulae is a minimal unsatisfiable
core iff ∀ϕ ∈ UC. UC \ {ϕ} is satisfiable.

If there are multiple minimal unsatisfiable cores in Γ, a minimum
unsatisfiable core is one that has the least cardinality, as below.

Definition 3 (Minimum Unsatisfiable Core). A minimal unsat-
isfiable core UC for a given set Γ of formulae is a minimum
unsatisfiable core iff every unsatisfiable core UC′ of Γ has
|UC′| ≥ |UC|.

Note that there could even be multiple minimum unsatisfiable
cores for a given set of formulae, if these are of the same size.
Sometimes it is useful to find all the minimal unsatisfiable cores
to allow the user to select the “best” explanation.

Unfortunately, deciding if a set of LTL formulae is a mini-
mal unsatisfiable core is in PSPACE, and is conjectured to be
PSPACE-complete [25], thus it is expensive to pinpoint the ex-
act reason of inconsistency. However, in many cases, it may be
important to find (not necessarily minimal) unsatisfiable cores,
since they still provide the user with useful information.

4.2. Finding Unsatisfiable Cores
We now outline our procedure for finding unsatisfiable cores

of the given domain knowledge and compliance rules. The
technique we use is known in the automated reasoning and
artificial intelligence communities as “back-jumping” or “use-
check” [28], and is integrated into our tree-based tableaux method.

The tree-based tableaux method for checking satisfiability
attempts to build a linear model of nodes for the given set of
formulae Γ. Each node in the model contains the set of formulae
which are true at that node. It does this by starting with an
initial root node that contains Γ as a set of formulae of LTL. Un-
der the assumption that Γ is LTL-satisfiable (i.e., has a model),
the tableaux method adds further nodes below the current node

6

which must also be LTL-satisfiable. It adds these nodes by apply-
ing a rule from a given finite set of rules to one of the formulae
in the node to give a new node containing new formulae.

If the current node contains the formula ϕ∧ψ, as well as the
set of formulae X , then the tableau rule for (∧) can be applied
to obtain a child node that is identical to the current node, except
that ϕ ∧ ψ is replaced by two formulae ϕ and ψ. The rule can
be written as shown below at left:

(∧)
X;ϕ ∧ ψ
X;ϕ;ψ

(∨)
X;ϕ ∨ ψ
X;ϕ | X;ψ

(⊥)
X; p;¬p

(X)
Z;X ϕ1,X ϕ2; · · · ;X ϕn

ϕ1, ϕ2; · · · ;ϕn

Z only contains literals and (⊥) not applicable

The rule (∨), shown above in the middle splits the current
branch into two branches: one where the child node contains
ϕ instead of ϕ ∨ ψ, and the other which contains ψ instead of
ϕ ∨ ψ. These branches capture the intuition that if ϕ ∨ ψ is true,
then ϕ is true or ψ is true.

The (X) rule intuitively creates a child node which is a
“next” state to the current state. Thus, it has a side-condition
which says that it can be applied only when no other rules could
apply. The rule (⊥), shown above on the right is a “stopping
rule” which says that we can stop expansion of the current branch
if we find a node that contains a contradictory pair of atomic
formulae. That is, if we find such a pair, then the current node
has no children. Such a node is said to be “closed”.

We omit the rules for F,G,U and B since they are more
complicated to explain. However F and U behave in essentially
the same way as (∨) for the purposes of backtracking, since
ϕ U ψ ≡ ψ∨ (ϕ∧X (ϕ U ψ)), and G and B behave similarly
to (∧) because ϕ B ψ ≡ ¬ψ ∧ (ϕ ∨X (ϕ B ψ)).

The usual way to explore these branches is to traverse them
in a depth-first, left-to-right order. When we apply a (∧) or
(∨) rule to a node, we label the node as an ∧-node or ∨-node
respectively. When we find a closed node, we propagate that
status upwards to the parent of the closed node as follows. If the
parent is an ∧-node or an X -node then it gets the status closed
too. Else if the parent is an ∨-node it gets the status closed if
both of its children are closed.

Suppose we have a node X;ϕ ∨ ψ which we split into two
child nodesX;ϕ andX;ψ. Suppose that theX;ϕ branch closes
somewhere below this node because it creates a node Y ; p;¬p.
We can immediately form the set Xl = {p,¬p} as a “bad” set.
When we backtrack up from Y ; p;¬p, we can trace the formulae
p and ¬p to the formulae which create them and replace each
in Xl with its respective traced formula. We repeat this tracing
procedure to higher and higher nodes and collect these larger and
larger “bad” formulae into a larger and larger set. Eventually,
we end up at X;ϕ with some set Xl of “bad” formulae. That is,
we know that Xl ⊆ (X;ϕ) is unsatisfiable (i.e. contradictory).

If we have Xl ⊆ X then we can conclude that ϕ is irrelevant
to the contradiction. Hence we can conclude that X;ψ will be
contradictory for exactly the same reason: namely the contradic-
tory Xl that is sitting inside X . This means that we do not even

have to expand the X;ψ branch, we can just declare it closed
and backtrack further up the tableau branch.

On the other hand, if Xl 6⊆ X then we have to explore the
right branch by expanding the right child X;ψ. Suppose it gives
us an unsatisfiable set Xr ⊆ (X;ψ). If Xr ⊆ X then we can
pass up Xr alone, ignoring Xl. That is, this tells us that if we
had swapped the order of exploration and had explored X;ψ
first, then we would have back-jumped over the X;ϕ child since
X contains a contradictory subset Xr.

On the other hand, if Xr 6⊆ X then we have found two
contradictory sets Xl ⊆ (X;ϕ) and Xr ⊆ (X;ψ) such that
Xl 6⊆ X and Xr 6⊆ X . We therefore form the set Xlr =
(Xl \ {ϕ}) ∪ (Xr \ {ψ})) ∪ {ϕ ∨ ψ} by replacing ϕ and ψ by
ϕ ∨ ψ in the union of Xl and Xr. We can guarantee that Xlr is
unsatisfiable since an application of the (∨)-rule immediately
gives us two children Xl;Xr \ {ψ} and Xr;Xl \ {ϕ}, each of
which contains an unsatisfiable subset Xl and Xr respectively.

Notice that there may be a set W ⊂ Xlr which is also unsat-
isfiable and strictly smaller than Xlr, thus we do not guarantee
to identify a minimal unsatisfiable core.

Finally, here is what we do at an X node. As described
above, the child will give a “bad” setXb ⊆ {ϕ1, · · · ;ϕn}which
we know to be unsatisfiable. We therefore return the set X Xb =
{X ϕi | ϕi ∈ Xb} as an unsatisfiable core. Again, this set may
not be minimal. There are also some further complications that
arise because of the need to track unfulfilled eventualities. It
is impractical to find minimal unsatisfiable cores immediately
via back-jumping, so we further trim off the irrelevant formulae
from the result here as presented in Section 4.3.

Back-jumping is an optimisation to quickly discard branches
that do not lead to satisfiability. It improves the performance of
theorem proving in practice, but does not change the worst case
time complexity. Comparing to the graph-based method which
aims at finding all models of a formula, the tree-based method
is faster when the formula is satisfiable because it can stop once
it has found only one model.

4.3. Refining the Unsatisfiable Core
The tree based tableaux method with back-jumping is used

in the inconsistency analysis because we can also derive un-
satisfiable cores by using this method. If the user can already
determine the cause of inconsistency from the result given by
back-jumping, then no further refinement is needed. However,
sometimes the result returned by back-jumping may be a rela-
tively large subset. In this case, to help the user identify the cause
of inconsistency, we adopt a general algorithm to find a minimal
unsatisfiable core [29] and simultaneously avoid the complicated
internal operations in the tree-based tableaux method.

Two well known algorithms that use the theorem prover as
a black box to find minimal unsatisfiable cores are described
by Marques-Silva [29]. The deletion-based algorithm calls the
theorem prover O(m) times, where m is the size of the set
of formulae; the insertion-based algorithm with binary search
involves O(k × logm) calls to the theorem prover, where k is a
number that is much smaller than m. Despite the possible lower
complexity of insertion-based algorithms and their promising
results in Constraint Satisfaction Problems, they are not widely
used because insertion-based methods are not effective in solving

7

minimal unsatisfiable core problems. Moreover, the inconsistent
set returned by back-jumping can often be significantly smaller
than Γ, we therefore use the deletion-based algorithm.

Given an unsatisfiable core ∆ returned by back-jumping, we
call the theorem prover iteratively to find a minimal unsatisfiable
core as follows. For each ϕ ∈ ∆, we test if ∆\ϕ is unsatisfiable.
If ∆ \ ϕ is still unsatisfiable then ϕ does not contribute to the
inconsistency of this subset, and thus is deleted. Otherwise, we
keep ϕ in ∆ and test other formulae. This procedure terminates
when all the formulae in ∆ are tested, and the remaining set of
formulae is guaranteed to be a minimal unsatisfiable core.

Notice that minimal unsatisfiable cores are not defined in
terms of their sizes but rather on the inability to find an unsat-
isfiable strict subset. However sometimes a smaller set might
give the user a better intuition for correction. To find a minimum
unsatisfiable core, the naive approach is to check each subset
of Γ and find the smallest one that is unsatisfiable, as adopted
by van der Aalst et al. to identify the cause of an error [30].
Intuitively this procedure is done in a bottom-up fashion. That
is, first check those subsets that contain one formula, then check
those that contain two formulae, and so on until an unsatisfiable
subset is found. In the worst case, if there are n formulae in Γ,
one needs to test 2n subsets, the enormous search space makes
the naive approach computationally expensive. There could be
more intelligent methods for this problem, but those are out of
the scope of this paper.

4.4. Inconsistency Analysis of the Business Specification
With previously described techniques and definitions at hand,

we now demonstrate our strategy to analyze the inconsistency of
the domain knowledge and compliance rules. Our assumption
here is that in step C of Figure 1, the theorem prover has returned
unsatisfiability for the specification, and now we want to analyse
the reason why it is inconsistent. We proceed as follows.

First of all, we check the satisfiability of the domain knowl-
edge DK. It is very rare that there are inconsistencies in the
domain knowledge, since most of those formulae do not con-
strain the behavior of the business process. Secondly we check
whether the set of compliance rules CR are satisfiable, any con-
tradictory rules will be corrected by iterating this step. Finally,
when the sets of domain knowledge DK formulae and compli-
ance rules CR formulae are both independently satisfiable, we
check whether the two of them together as Γ = DK ∪ CR are
consistent (satisfiable).

After the first two steps, if we find any internal inconsistency
in the domain knowledge or the rules, backjumping gives an
unsatisfiable core as the cause of inconsistency. On the other
hand, if the checks in the first two steps are passed, we then
proceed to the final step, after which we report errors caused
by the interaction of DK and CR, if any. Each time the cause
of inconsistency is reported, our process synthesis procedure
loops back to step L in Figure 1 to refine the domain knowledge
and/or rules.

For the first two of these steps, we provide three basic options
to deal with inconsistencies. If Λ, the set of formulae being
tested, is not satisfiable, the back-jumping procedure will return
an unsatisfiable core ∆. If the user cannot identify the cause of
inconsistency from ∆, then we can either (1) refine ∆ by the

deletion-based algorithm and find a minimal unsatisfiable core,
or (2) test each subset of ∆ to find a local minimum unsatisfiable
core in ∆. Note that the result returned by the latter option may
not be a global minimum unsatisfiable core, since there may
be smaller minimal unsatisfiable cores outside ∆. Therefore,
we can (3) test each subset of Λ to find a global minimum
unsatisfiable core.

For the last of these steps, the situation is more complicated.
The first two steps guarantee that the set of domain knowledge
DK and the set of compliance rules CR are satisfiable indepen-
dently. So if their conjunction Γ is unsatisfiable, then both DK
and CR should have at least one formula in the unsatisfiable
cores. Since DK is the encoding of the underlying assumptions
of the business process, such as “the goal must be reached” or
“occurrence of actions should lead to corresponding results”,
onceDK is verified to be correct, it should not be changed. That
is, the user may be more interested in the compliance rules that
break the consistency. Therefore, in addition to the previously
introduced three basic options, we further provide three more
to focus on the compliance rules. Suppose Γ is unsatisfiable,
the back-jumping procedure returns an unsatisfiable core ∆,
but the user needs a deeper analysis, we split ∆ into two sets:
∆DK = DK ∩ ∆, and ∆CR = CR ∩ ∆. Then we can either
(4) run the deletion-based algorithm on ∆, but only test those
formulae from ∆CR, and return the remaining formula(e) in
∆CR as a minimal unsatisfiable core related to CR, or (5) test
each subset of ∆CR together with ∆DK to find a local mini-
mum unsatisfiable core in ∆ related to CR. Finally, we can also
(6) test each subset of CR together with DK to find a global
minimum unsatisfiable core in Γ related to CR.

The use of the six options depends on the user. We have
some general observations, but the pros and cons are to be inves-
tigated as future work. Our business process synthesis procedure
requires the domain knowledge and compliance rules to be con-
sistent, so only when all the inconsistencies are removed can we
proceed to generate the set of traces for this business process.
Consequently, if there are multiple minimal unsatisfiable cores
in Γ, we have to correct each one of them until Γ is satisfiable.
In this sense, the order of discovery and their size do not matter.
In general, finding a minimal unsatisfiable core is faster than
finding a minimum one, so the user might tend to choose (1) and
(4) instead of (2) and (5). Similarly, since the search space of
(3) and (6) are in general much larger than other options, they
may be costly in terms of computational time.

As another aspect of comparison, the benefit of specifically
analyzing compliance rules (options (4-6)) may not be obvious
under some conditions, since it may “push” the cause of unsat-
isfiability into the domain knowledge. A minimum (locally or
globally) unsatisfiable core related to CR may not be minimum
in Γ, because there may be more formulae in DK that contribute
to the inconsistency. For the same reason, merely giving a set
of compliance rules as the cause of inconsistency may not be so
helpful in some cases, as it is possible that the error is related
more tightly to a chain of formulae in the domain knowledge,
thus leaving only the compliance rules that are not obviously
related to each other.

Suppose the unsatisfiable core returned by back-jumping is
∆, the size of which is denoted by |∆|. In the worst case, option

8

(1) involves O(|∆|) calls to the theorem prover, whereas option
(2) needs O(2|∆|) calls to the theorem prover. The number
of times Option (3) calls the theorem prover is exponential in
the size of the entire formula being tested, which is usually
larger than ∆. Similarly, suppose in the third step, when we
test the domain knowledge and rules together, the rules in ∆
consist of the set ∆CR of size |∆CR|. Then option (4) calls
the theorem prover O(|∆CR|) times, and for option (5) it is
O(2|∆CR|). Option (6), by contrast, invokes the theorem prover
O(2|CR|) times, where |CR| is the number of compliance rules.

Example. In this example, we add some rules regardless of
the correctness and the applicability in the banking area. The
purpose is to demonstrate our inconsistency analysis.

Trivial errors such as adding G ¬edd to the previous four
rules can be picked up by back-jumping, resulting in a subset
{(F edd), (G ¬edd)}. Since this is already a minimal (and min-
imum) unsatisfiable core, there is no need for further refinement.

Suppose the user comes up with an idea that the due dili-
gence evaluation should be done before the risk assessment,
since if one fails the due diligence evaluation and is black-
listed, his bank account should not be opened, and thus there
is no need to do risk assessment anymore (we do not consider
if this is the case in real life). Therefore, risk assessment is
only required when one passes the due diligence evaluation
(G (edd∧ep⇒ F ra)∧G (ra⇒ ep)). Moreover, the user gets
confused at this point and specifies that the bank should blacklist
anyone whose open-account request is denied (G (od⇒ F bl)),
and if his bank account is granted the bank should evaluate his
due diligence again for double checking (G (og ⇒ F edd)).

The above rules give the following set of LTL formulae:

{G(bl⇒ ef),G(edd ∧ ep⇒ F ra),G(ra⇒ ep),

G(od⇒ F bl),G(og ⇒ F edd)}

Note that G (bl ⇒ ef) is added to complete the semantics of
R4. The independent tests of the domain knowledge and compli-
ance rules show that they are both satisfiable, but the conjunction
of them yields a set of unsatisfiable formulae. However, this time
the back-jumping procedure gives a large unsatisfiable core ∆
which must contain formulae from both the domain knowledge
and the compliance rules. To refine ∆, we use option (1) to find
a minimal unsatisfiable core ∆1 ⊆ ∆, as shown below.

∆1 = ∆1
CR ∪∆1

DK, where
∆1
CR = {G (og ⇒ F edd),G (od⇒ F bl),

G (ra⇒ ep),G (bl⇒ ef),G (og ⇒ rl),
F ra}

∆1
DK = {G (edd⇒ X G ¬edd),

G (¬ef ⇒ X edd B ef),
G (ef ⇒ X edd B ¬ef),
G (ei⇒ X edd B ¬ei),
G (ri⇒ X ra B ¬ri),
G ¬(ef ∧ ep),G ¬(ei ∧ ep),G ¬(ri ∧ rl),
G (ra⇒ ¬end ∧ ¬start ∧ ¬edd ∧ ¬og∧
¬od ∧ ¬bl),
F (og ∨ od),G (start⇒ ri ∧ ¬rh ∧ ¬rl∧
ei ∧ ¬ep ∧ ¬ef), start}

Interpreting the meaning of those formulae may be time con-
suming, so suppose the user is still not satisfied with this answer
and wants to focus on compliance rules, in which case option
(4) is used on ∆, and returns ∆4 = {G (og ⇒ rl),G (od ⇒
rh),G (bl ⇒ ef),G (ra ⇒ ep),G (od ⇒ F bl),G (og ⇒
F edd)} as a minimal unsatisfiable core of compliance rules.
Note that this core is different from ∆1

CR, this highlights the fact
that there may be multiple minimal unsatisfiable cores that give
different causes of the inconsistency.

It seems that the minimal unsatisfiable core ∆4 is still lengthy,
but removing any formula ϕ from it gives a satisfiable set
∆4 \ {ϕ}. The reason for its large size is that it captures two in-
teracting causes of inconsistency. First, {G (bl⇒ ef)} unveils
that bl should only be executed when one fails the due diligence
evaluation, and {G (ra ⇒ ep)} indicates that the client’s risk
will be assessed only when he passes the due diligence evalu-
ation. However, formulae {G (od ⇒ rh),G (od ⇒ F bl)}
enforce that if the client’s risk is assessed to be high, then his
opening account request will be denied, and he will be black-
listed afterwards. Thus it is possible to blacklist a client even
if he passes the due diligence evaluation, and this violates the
rule that restricts blacklisting to only happen when ef is true2.
Secondly, {G (og ⇒ rl),G (og ⇒ F edd)} manifests that og
occurs only when the risk is assessed to be low, which implies
that ra, and hence edd, have already been executed. But og will
lead to edd again, which is not allowed by our “once” rule in the
domain knowledge. The domain knowledge specifies that the
goal of this process is either to grant the opening of an account
(og), or to deny it (od). However, ∆4 closes the option of od
since it will cause bl to be executed incorrectly. The only re-
maining goal og gives rise to the restarting of edd, which forms
a cycle that never ends.

When the set of unsatisfiable core is reported to the user, a
new iteration is triggered so that business experts and compli-
ance experts can discuss and redefine the domain knowledge or
compliance rules. It is definitely not trivial to automatically cor-
rect the set of unsatisfiable formulae, so human involvement is
needed to ensure that the intended business process is captured.

5. Trace Generation and Analysis

If a set of compliance rules is satisfiable, we obtain a pseu-
domodel that describes all traces that conform to the domain
knowledge and compliance requirements. Section 5.1 shows
how we extract traces from such a pseudomodel. Then, we dis-
cuss how to check a property against a set of traces using logic
in Section 5.2. This technique is applied in Section 5.3 to verify
correctness criteria over these traces.

2Please notice that the way we capture the semantics of a process is that if a
result (e.g., ef) is true at a state, then this result holds at that time. If an action
is true at a state, then this action happens at that time. We enforce each action to
only happen once, so each action can only be true once in a trace, but the truth
value of a result can persist. Therefore G (action ⇒ result) means the action
can only happen when the result holds, while G (action1 ⇒ F action2)
means if action1 happens, then action2 must happen after that. They cannot
occur at the same state because we have the “interleave” constraint.

9

5.1. Extracting Traces
Given a pseudomodel, we extract traces as follows. Any

sequence σ = s0, . . . , sn of states, starting at the root node of the
pseudomodel can be extended into a trace. As we are modeling
finite sequences with an end state, we consider a trace to be
complete if end ∈ sn. Because of the once constraint introduced
in the Section 3, there will be no loops in the pseudomodel
between the start and the end. Hence, the finite set of paths in
the pseudomodel between the root state and a state labeled with
end is the set of correct traces.

Note that it is possible to extract traces that take repetition
of activities into account by omitting the once constraint in the
domain knowledge. Still, for our purpose, this does not seem
to be appropriate. Business experts rarely explicitly forbid the
repetition of activity execution, but we feel that this is implicitly
intended in many cases. Additionally, modeling all potential
loops blurs the structure of a generated process template. As this
hinders discussions between business and compliance experts,
we explicitly forbid repetition for our synthesis approach.

The time complexity of our traces extraction procedure is
linear in the size of traces. If the process we are trying to model
is well-structured, the number of traces will usually be small.
For flexible processes, however, there could be a large number
of traces. The number of states on each trace, which is also the
number of actions to execute on a trace (it happens to be this
case because of the way we encode the domain knowledge, cf.
Table 1), is another factor that determines the size of traces.

Example. Back to the rules we formulated in Section 3.2,
some of the traces extracted from the pseudomodel are illustrated
in Table 2. Here, the states of a trace are characterized by the
conjunction of propositions that hold true in the respective state.

5.2. Process Mining using Logic
Traditional process mining takes the so-called event log as

input, which contains the execution sequences of events that are
recorded. It is common that event logs may contain noise and
be incomplete [31], but in our approach, the set of traces that
represents the execution sequences of actions is generated by a
theorem prover for LTL. Therefore, incorrectness of our traces
usually indicates that the rules are not well defined. Moreover,
we do not have to consider probabilistic or heuristic approaches
for handling the errors, and thus can focus on the analysis by
using logic, which provides a more flexible and extensible way
to reason about the information that those traces imply.

To incorporate the process mining procedure in our context,
we adopt the idea of theorem proving to analyze the set of
traces. To query the LTL theorem prover, we ask if Γ⇒ query
is valid, where Γ is the encoded domain knowledge plus the
formulated compliance rules. Note that the implementation
is a satisfiability tester so that the validity of Γ ⇒ query is
converted to the satisfiability of Γ ∧ ¬query, and if this turns
out to be unsatisfiable, then Γ ⇒ query is valid. Or, we can
simply express the query as Γ ∧ query to test whether the query
is satisfiable.

Since the set Γ of formulae, which can be used to construct
the set of traces, does not change in our process mining pro-
cedure, we use the set of traces instead for the queries, so that

there is no need for invoking the theorem prover for each query.
As a consequence, the query is simplified to asking whether a
formula can be satisfied by the set of traces. This greatly reduces
the time cost of the procedure compared to repeated calls to the
theorem prover.

The testing of a query formula ϕ against the set of traces
is based on the semantics of LTL. To know whether Γ ∧ p is
satisfiable, where p is an atomic proposition, we check whether a
given state (in this case, the first state of each trace) contains p, if
p is in that state, then Γ∧ p is satisfiable. Formulae consisting of
¬,∧,∨,→ are tested according to the semantics of propositional
logic. Those involving temporal operators X ,F ,G are tested
respectively by checking whether the formula is true at the
next state, somewhere after (including) the current state, and all
the states from the current state. This is different from model
checking in the sense that we are testingϕ against all the possible
models that Γ produces. Therefore, as long as there is a trace
that satisfies ϕ, the trace checker will return true, otherwise it
will return false. Since Γ and the set of traces P represent the
same information in our context, we will denote “test ϕ against
P” as the query formula Γ ∧ ϕ in the rest of the paper.

The above method is particularly useful when we need to
check a series of properties against the same set of traces, and
those properties can be translated into very small formulae. For
example, those formulae being tested in the following sections
usually only contain one temporal operator, thus the querying
procedure only visits each state on each trace once in the worst
case. The “next” operator X is easy to handle since we only
need to test the next state, but too many eventualities such as
F and U will complicate the computation. This method is not
efficient if one wants to test a large formula, in which case we
prefer to use theorem proving to solve the problem.

5.3. Analysis of Extracted Traces
As stated earlier, the goal of synthesizing a process template

out of compliance rules is to support experts in getting a better
understanding of the compliance aspects and to discover miss-
ing or under-specified requirements. However, it is possible
to detect such under-specification by analyzing the extracted
traces before proceeding to synthesizing a process template. Yet,
not every semantical error in the specification can be detected,
so a human expert has to validate the synthesized process tem-
plate. In this section,we address the issue of under-specified LTL
specifications by checking correctness criteria for the extracted
traces.

Let P be a set of traces derived from a pseudomodel, cf.
Section 5.1. We leverage the information whether an action
a ∈ A is optional for completing the process.

Definition 4 (Optional Actions). Given a set of actions A and
a set of traces P , the set AO of optional actions is defined as
AO = {a ∈ A : ∃ σ ∈ P.a 6∈ σ}. The set AM of mandatory
actions is thus the complement of AO, i.e., AM = A \AO.

To detect optional actions, we simply test the satisfiability of
Γ ∧G¬a for every action a. If this is satisfied by some traces,
then a is optional.

10

Table 2: Excerpt of the extracted traces

σ1 : start ∧ ei ∧ ri, edd ∧ ep ∧ ri, ra ∧ ep ∧ rh, bl ∧ ep ∧ rh, od ∧ ep ∧ rh, end ∧ ep ∧ rh
σ2 : start ∧ ei ∧ ri, edd ∧ ep ∧ ri, ra ∧ ep ∧ rh, od ∧ ep ∧ rh, end ∧ ep ∧ rh
σ14 : start ∧ ei ∧ ri, edd ∧ ef ∧ ri, bl ∧ ef ∧ ri, ra ∧ ef ∧ rl, og ∧ ef ∧ rl, end ∧ ef ∧ rl
· · ·
σ32 : start ∧ ei ∧ ri, ra ∧ rl ∧ ei, og ∧ rl ∧ ei, edd ∧ ep ∧ rl, end ∧ ep ∧ rl
· · ·
· · ·
σ37 : start ∧ ei ∧ ri, bl ∧ ei ∧ ri, edd ∧ ep ∧ ri, ra ∧ ep ∧ rh, od ∧ ep ∧ rh, end ∧ ep ∧ rh
· · ·
σ42 : start ∧ ei ∧ ri, bl ∧ ei ∧ ri, ra ∧ rl ∧ ei, og ∧ rl ∧ ei, edd ∧ ep ∧ rl, end ∧ ep ∧ rl

We argue that the correctness of a specification where some
activity is optional requires the existence of a specific data con-
dition under which the optional activity is executed. Even if
the choice of executing an activity shall be taken in a non-
deterministic way, an according result predicate set by an artifi-
cial initial activity and an condition shall be part of the model.3

Then, we still obtain a complete specification of the behavior
and, therefore, are able to ensure compliance of the created pro-
cess template with the requirements. For the traces in Table 2,
for instance, og and od are optional activities. The condition un-
der which og executes is (rl∧ef)∨ (rl∧ep)∨ (rl∧ei), i.e., the
risk object assumes the value ‘low’. Action og is executed inde-
pendently from the value of the due diligence evaluation object.
For action od the condition is (rh∧ ef)∨ (rh∧ ep)∨ (rh∧ ei),
i.e., the risk is ‘high’. In contrast, action bl is executed under the
condition (ei ∧ ri) ∨ (ei ∧ rh) ∨ (ei ∧ rl) ∨ (ef ∧ ri) ∨ (ef ∧
rh)∨ (ef ∧ rl)∨ (ep∧ rh)∨ (ep∧ rl)∨ (ep∧ ri). Hence, none
of the objects influences the decision of executing bl, since bl
appears with all combinations of data values. Yet, bl is optional.
This indicates an under-specified LTL specification as conditions
for executing optional activities are not stated explicitly.

Definition 5 (Optional Action Execution Condition). LetAO

be the set of optional actions w.r.t a set of traces P , and RE
the set of mutually exclusive results. For an action a ∈ AO, the
execution condition is defined as:
conda = {{r1, . . . , rn} : ∃ σ ∈ P.∃ s ∈ σ.a ∈ s∧r1 ∈ s∧r1 ∈
S1∧S1 ∈ RE∧· · ·∧rn ∈ s∧rn ∈ Sn∧Sn ∈ RE∧n = |RE|}
where the sets Si, 1 ≤ i ≤ n, are different.

This definition describes the conditions under which an action
executes by investigating, for each observation of the action a,
the data effects (results) that are true in the same state as a. If an
optional activity a has an execution condition, which is a proper
subset of the combination of non-exclusive results, then this
indicates a well specified set of compliance rules. We formalize
this trace correctness criterion as follows.

Definition 6 (Proper Execution of Optional Actions). LetAO

be the set of optional actions with respect to a set of traces P
andRE the set of mutually exclusive results. We define the set of

3Attention! Do you mean this: Even if the choice of executing an activity is
to be made in a non-deterministic way, an appropriate result-predicate which is
set by an artificial initial activity must be part of the model.

all possible results interactions as RI = {{r1, . . . , rn} : r1 ∈
S1 ∧ S1 ∈ RE ∧ · · · ∧ rn ∈ Sn ∧ Sn ∈ RE ∧ n = |RE|}. An
action a ∈ AO has a proper execution iff conda ⊂ RI .

The rationale behind this definition is that the execution con-
dition of an optional action oa is proper if and only if there
exist some combinations of results that prevent it from occur-
ring. To check this, we test Γ ∧ F(r1 ∧ · · · ∧ rn ∧ oa), for each
{r1, · · · , rn} ∈ RI . If there is a set in RI together with oa that
is unsatisfiable, then this criterion is met for oa.

The proper execution of actions is the first correctness crite-
rion to be investigated on traces before synthesizing a template.
Referring to the set of traces in Table 2, we find that this criterion
is not met for activity bl.

The second correctness criterion also relates to the execution
of optional actions. Even if an optional action has a proper exe-
cution condition, the set of compliance rules might be specified
in a way that allows a counter-intuitive execution of optional
tasks. Imagine that rule R3 from Section 3.2 is modified to:

R3 : G (od⇒ (rh ∨ ef)) ∧G (og ⇒ (rl ∧ ep)).

Then, od has a proper execution condition which is: (ri ∧ ef) ∨
(rh ∧ ef) ∨ (rh ∧ ep) ∨ (rl ∧ ef) ∨ (rh ∧ ei). Yet, we can
observe traces like the following.

σ : start ∧ ei ∧ ri, edd ∧ ef ∧ ri, od ∧ ef ∧ ri,
ra ∧ ef ∧ rl, . . . , end ∧ ef ∧ rl

In this trace, we can observe that od has been executed
before executing ra and it is still a compliant execution, because
the condition ef ∨ rh holds at the point of execution of od.
However, from the execution condition of od we observe that
it depends on the result of both actions ra and edd. Thus, it
seems reasonable to postpone the execution of od until the state
where ra and edd have been executed. Generally, we require that
an optional action must not be executed until all actions upon
which it depends have been already executed. This property,
related to a concept called natural order, is motivated by the
aim of deriving a well-structured process template, suited for
discussions among experts, in an imperative modeling language
that emphasizes the control flow logic. Hence, only at a few
branching points, data values are considered in order to decide
on the continuation. The natural order, therefore, can be seen as
a means to control the number of decision points which prevents
the creation of overly complex models.

11

Definition 7 (Natural Order). Let AO be the set of optional
actions with respect to a set of traces P , CondEffa be the set
of results contributing to the condition of an optional action
a ∈ AO, the set CnAa = {ca ∈ A : Rca ∩ CondEffa 6= ∅} be
the set of controlling actions for a. We say that a natural order
between optional action a and its controlling actions CnAa

is kept iff ∀σ ∈ P.(∀si ∈ σ.a ∈ si ⇒ ∀ca ∈ CnAa.∃sj ∈
σ.ca ∈ sj ∧ j < i) , where i, j ∈ N.

Definition 7 ensures that the execution of an optional action
a must always be preceded by all actions which contribute to
the execution condition of a.

The final correctness criterion for a set of traces is data-
completeness. A set of traces P is data-complete if for every
possible combination of results resulting from the mandatory
activities, there is a trace in which this combination occurs.

Definition 8 (Traces Data-Completeness). Let P be a set of
traces, AM be the set of mandatory actions and REM be the set
of mutually exclusive results of mandatory actions, defined as
REM ⊂ RE. ∀EM ∈ REM ∀r ∈ EM .r ∈ Ra where a ∈ AM .
We define the set RIM = {{r1, . . . , rn} : r1 ∈ S1 ∧ S1 ∈
REM ∧ · · · ∧ rn ∈ Sn ∧ Sn ∈ REM ∧ n = |REM |}. The set
of traces P is data-complete iff ∀ C ∈ RIM . ∃ σ ∈ P. ∃ si ∈
σ : ∀ r ∈ C r ∈ si where i > 0 and the sets Si are different.

To verify this, we test each exclusive set of results of each
mandatory action. That is, for every {r1, ..., rn} ∈ RIM , we
ask Γ ∧ F(r1 ∧ · · · ∧ rn), if the answer is satisfiable for every
set in RIM , then the set of traces is data-complete.

A process template may be generated even if data incom-
pleteness is detected for a set of traces. However, the template
could suffer from deadlocks as for some combinations of results,
continuation of processing is not defined.

6. Addressing Failed Trace Correctness Criteria

In Section 5.3 we have described three correctness criteria
for the generated traces that must be fulfilled before a process
template can be generated.

In this section we discuss approaches to help refine the com-
pliance rules and thus the traces in case an improper execution
condition or data-incompleteness is found in the traces.

6.1. Handling Optional Actions
A set of traces fails the proper execution condition criterion

if at least one optional action appears under all possible result
interactions. The primary reason of this violation is the under-
specification of conditions under which an optional action shall
be executed. Business experts usually tend to express the rules
in the way R4 is specified, i.e., “If due diligence evaluation
fails, then the client has to be added to the bank’s black list”,
which is formalized as G (edd ∧ ef ⇒ F bl). Thus, they
focus on the reasons that call for executing some optional action
without explicitly specifying data conditions that must hold at
the point in time such actions are executed. As a result, the
satisfiability checker generates some traces that are compliant
with the explicitly mentioned rules yet are meaningless from a

business-expert point of view. In this behavior, optional actions
are executed unnecessarily, cf. trace σ37 in Table 2 where the
client is immediately blacklisted before any other actions occur.

In this section, we address this problem of improper ex-
ecution conditions of optional actions by detecting so-called
implied runs. The term implied run is inspired by the term
implied scenario [32, 33] from the requirements engineering
domain. An implied scenario represents an unnecessary and
usually unwanted extra behavior of a software system that was
not intended by the users. The detection of implied scenarios
indicates under-specification of requirements and triggers a new
iteration of specification refinement.

Definition 9 (Implied Process Run). Given a set of actions A
and a set of process runs P , a process run σ : s0, . . . , sn ∈ P
is called implied, if there exists an action a ∈ AO and an
integer k such that a ∈ sk, and there is a process run σ′ :
s0, . . . , sk−1, sk+1, . . . , sn ∈ P .

Intuitively we can delete σ since the almost identical σ′ can
substitute for it, and the optional action a has no effect on the
compliance of the process.

Based on the implied run notion, we reduce the set of traces
considered for process template generation by removing implied
runs. With our approach, we strive for a minimal representation
of the compliant behavior. Hence, the potential execution of
an optional action should be neglected in order to synthesize
compact process templates. To detect such optional execution,
we check all process traces that contain an optional action such
that the removal of the according state results in a process run
that is also in the set of all process runs. If so, this provides us
with evidence that the optional action is not needed to complete
the process run (trace) in a compliant manner. Hence, such an
implied process run is not considered for process template gener-
ation. With the removal of implied runs we can obtain a proper
execution condition for optional task and thus can continue try-
ing to generate a process template. Moreover, we can suggest
to the user further rules that explicitly state conditions for the
execution of optional tasks of the form G (a⇒ conda), where
a is an optional task and conda is now the proper condition
according to Definition 6.

Definition 7 describes the natural order correctness criterion
between optional actions and their controllers as lacking traces in
which an optional action might appear before all of its controllers
have already been executed. If this criterion is not met, we
follow the same approach we did with the implied runs: we
delete the traces in which the criterion is violated. This comes
with the cost of not being completely faithful to the behavior
stated in the rules, but we argue that experts care only about
executing the optional action after its controlling actions have
already completed. Moreover, maintaining the natural order
helps produce structured models which will be better understood
by experts and better serve as a design template for operational
processes.

Based on each violating trace that we drop, we can deduce
an explicit ordering rule between the optional action and its
controller of the form G (start⇒ (ca B oa)), where oa is the
optional action and ca is one of its controlling actions.

12

Example. In our running example, we have identified that
task bl has an improper execution condition, cf. Table 2. Accord-
ing to Definition 9, run σ1 is an implied run because removing
the state in which bl appears yields the trace σ2. We can see that
bl was unnecessarily executed in run σ1, because the task edd
resulted in ep. That is, the due diligence evaluation succeeded
and there is no need to black list the customer. On the other hand,
trace σ14 cannot be dropped as there is no other trace that looks
exactly the same but avoids executing bl because removing the
state where bl executes yields a non-compliant execution since
rule R4 will not be fulfilled. After dropping the implied runs,
we can suggest the following rule G (bl ⇒ ef) that explicitly
states that bl executes only when ef holds.

6.2. Identifying Vacuously Satisfied Rules
The satisfiability checker is designed in a way that generates

all possible traces, that satisfy Γ. However, in some cases, the
traces satisfy a rule vacuously, especially if these rules lead to
contradictions with other rules. Imagine two actions a and b
where a has the exclusive results r1 and r2. Suppose that we
have two rules t1 : G (a ∧ r1 ⇒ F b) and t2 : G (¬b). It
is obvious that it is not possible to satisfy t1 by allowing a to
produce the effect r1 because this contradicts with t2. Rather, t1
is satisfied vacuously by never making the condition of t1 true.

Data-incompleteness of the traces occurs when some rules
are vacuously satisfied. This indicates that some result combi-
nations will lead to a contradiction and thus the satisfiability
checker avoids producing these results.

Definition 10 (Vacuously satisfied rules). Let CR be the set
of LTL rules representing compliance requirements, DK be
the set of LTL rules representing the domain knowledge where
Γ = DK ∪ CR and let P be the set of traces generated for Γ.
A rule r ∈ CR ∪ DK is vacuously satisfied by P , written as
P |=v r, iff ∀σ ∈ P.@s ∈ σ.s |= cond(r), where cond(r) is the
condition part of the rule r.

For each rule, trace σ ∈ P and state s ∈ S we need to check
whether the conjunction of atomic propositions that hold true
in state s logically implies the propositional formula forming
the condition of the rule. The result of this scan is the set
V S = {r ∈ CR ∪ DK : P |=v r}.

We construct V S by finding those rules r that are unsat-
isfiable when we force cond(r) to occur. That is, we check
Γ ∧ F (cond(r)) and we run the test described in Section 4.
These inconsistencies are then reported to the user for correction,
e.g., refining the rules, and then iterate, cf. Figure 1.

7. Process Template Generation and Evaluation

Given a set of traces that meets the aforementioned correct-
ness criteria, we proceed by generating a process template. To
this end, we adapt techniques from the field of process mining
and process restructuring to create an initial process template in
Section 7.1. Then, Section 7.2 shows how the initial template is
augmented with data conditions. Finally, Section 7.3 elaborates
on the evaluation of the generated process template.

7.1. Generating Process Templates
The generation of an initial process template builds upon

techniques proposed in the field of process mining [34] and pro-
cess restructuring [35, 36]. Most mining algorithms neglect the
difference between control flow dependencies and data flow de-
pendencies when generating a process model. Therefore, we can-
not apply an existing algorithm directly. Also, process templates
are intended to serve as a means for discussion and negotiation
between business and compliance experts. Hence, we want to
ensure that the generated template is easy to understand. It has
been shown that block-structured process models are more easy
to understand than arbitrarily structured process models [37].
Block-structuredness refers to a topology of a process model
that requires every node with multiple outgoing edges to have a
corresponding node with multiple incoming flows such that both
nodes form a single-entry single-exit block. To obtain such a
process model structure, we combine basic techniques from the
field of process mining, i.e., behavioral relations known from
the α-mining algorithm [34], with techniques that aim for the
construction of a block-structured process model, see [35, 36].

Order of actions. As a first step, we extract the precedence
of actions. To this end, we employ the order relations known
from the α-mining algorithm [34].

Definition 11 (Order Relations). Let P be a set of traces and
A the sets of actions. We define the following order relations for
two actions a1, a2 ∈ A.
a1 > a2: iff there is a trace σ : s0, . . . , sn ∈ P , such that

a1 ∈ si ∧ a2 ∈ si+1 for some 0 ≤ i < n.
a1 → a2: iff a1 > a2 and a2 6> a1.
a1 || a2: iff a1 > a2 and a2 > a1.
a1 # a2: iff a1 6> a2 and a2 6> a1.

For two actions ordered by >, we know that the first action
appears immediately before the second action. We obtain the
order relations by testing satisfiability for the following formula
expressed in LTL: Γ ∧ F(a1 ∧ X a2). If this formula succeeds,
we conclude that a1 > a2. Then, the relations →, ||, and
are derived from the results for the > relation as stated in
Definition 11. For the model synthesis, therefore, we have to
test satisfiability using the method mentioned in Section 5.2 for
n2 formulae with n as the number of distinct actions.

Synthesis of process model. Having defined the order of
actions, one may directly proceed by applying the α-mining
algorithm [34] to construct a process model. However, this ap-
proach has drawbacks. First, the construction of a process model
may result in a model that shows behavioral anomalies, such
as deadlocks. The α-mining algorithm does not specify the re-
quirements for the derivation of a sound process model without
anomalies on the level of behavioral relations. Therefore, one
needs to construct a model using the algorithm and check its cor-
rectness subsequently. Second, the α-mining algorithm encodes
causal dependencies directly, which may lead to the interference
of synchronization of parallel paths and the choice about ex-
clusive continuations. This complicates the annotation of data
conditions, since there is no unique point at which the decision
is taken. For these reasons, we rely on the order relations of the
α-mining algorithm, but adopt the synthesis technique presented

13

in [35, 36]. It leverages the notion of an order relations graph
that is defined for a set of behavioral relations. We adapt this
notion towards the relations introduced earlier.

Definition 12 (Order Relations Graph). Let {→,#, ||} be or-
der relations for a set of actions A via Definition 11. The order
relations graph G = (V,E) comprises all actions as nodes,
V = A, and the relations→ and # as edges, E = (→ ∪#).

Edges in the order relations graph represent the order or exclu-
siveness of actions. Both relations are distinguished by unidirec-
tional or bidirectional edges. Using this graph, we employ the
synthesis technique introduced in [35, 36]. We limit ourselves
to an informal description of this synthesis and refer to [35, 36]
for the formal details.

The synthesis employs the modular decomposition [38] of
the order relations graph. It detects subgraphs, which show
uniform relations with all other nodes of the graph. The modular
decomposition technique parses a graph into a rooted hierarchy
of these subgraphs that are maximal and non-overlapping in
terms of their contained nodes. The modular decomposition
technique distinguishes different types of detected subgraphs.
Trivial subgraphs comprise only a single node. Subgraphs that
are complete graphs are referred to as being XOR-complete,
subgraphs that are edgeless are referred to as AND-complete.
Further, a subgraph is linear, if and only if all of its nodes are
sequentially ordered. Finally, subgraphs that do not meet any of
these requirements are called primitive. Algorithms to obtain a
modular decomposition tree run in time linear in the size of the
order relations graph [38]. The size of the decomposition tree
is also linear in the size of the graph. The size of the graph, in
turn, is determined by the number of actions.

For the generation of a process template, we require the order
relations graph to be free of primitives. If this is not the case,
user input is required on the behavioral dependencies between
the actions that are part of this subgraph. If the order relations
graph is free of primitives, the synthesis algorithm iteratively
constructs a process model from the identified subgraphs, cf. [35,
36]. That is, trivial subgraphs contain a single action, which is
added as an activity to the process model. Subgraphs that are
XOR-complete or AND-complete are represented by a block
that is bordered by gateways with either XOR- or AND-logic.
Finally, subgraphs that are linear lead to the construction of
edges between the respective activities.

Figure 2: Order relations graph.

Example. After we adapted the set of constraints for our
running example as discussed above, we derive the order rela-
tions graph, visualized in Figure 2. Since the graph is free of
primitive subgraphs, we proceed by applying modular decompo-

sition. Figure 34 illustrates this decomposition which identified
subgraphs comprising nodes with uniform relations to all other
nodes. Based on these subgraphs, the model synthesis returns
the process template visualized in Figure 4. Note that this tem-
plate does not correctly represent the action ‘black list a client’
as an optional action. This is due to the absence of any exclusive
action that is executed instead of this activity. Such anomalies
are corrected when annotating the template with data conditions.

Figure 4: Intermediate process template synthesized for the
example, annotations to constrain the execution of optional ac-
tivities are still missing.

7.2. Annotating Data Conditions
The process template created so far lacks details on the

data conditions that lead to the execution of optional activities.
We next augment the process template with such conditions.
We already introduced the notion of an execution condition
for optional actions in Definition 5. It is important to see that
these conditions are not local (i.e., consider only the directly
preceding actions as in our previous work [10]). Instead, indirect
data dependencies in terms of results that have been obtained by
actions that happened long before are also taken into account.

To annotate the process template with these execution condi-
tions one may guard the execution of each optional activity with
the respective condition separately. However, this may lead to
overly complex templates. Imagine that there is a sequence of
actions where all actions are guarded by the same execution con-
dition. Then, inserting decisions points for all of them separately
would inflate the template drastically compared to inserting just
one decisions point that guards the whole sequence of actions.
Hence, we proceed as follows.

1. We consider all XOR-complete subgraphs that have been
detected during the model synthesis. For each of these
subgraphs, we investigate whether the actions in each of
the child subgraphs show the same execution condition.
If so, we annotate the edge leading from the respective
splitting gateway with XOR-logic to the actions of the
child subgraph with this execution condition. We keep
the information on whether all actions of a child of an
XOR-complete subgraph could be treated in this way.

2. For all optional actions that are have not been treated
by the previous step, we insert two additional gateways
with XOR-logic directly before and after the action. Note
that the process template is acyclic and all actions have
at most one predecessor and at most one successor. The
edge between the gateway before the action and the action
itself is annotated with the execution condition. Further,

4Attention! Figure 3 appears after Figure 4. Is this intentional?

14

og

bl

ra

edd

od

start end
og

bl

ra

edd

od

start end
og

bl

ra

edd

od

start end

Figure 3: Steps of the modular decomposition for the example order relations graph.

an edge is defined between the gateway before the action
and the one after the action. This edge is annotated with
the disjunction of all results under which the execution
of the optional action is not observed. Those results are
determined by removing the result terms of the execution
condition from the set of all possible result combinations
of the objects references in the execution condition.

Again, this step does not impose computational challenges. The
data conditions for all actions have been determined before. The
annotation of process templates first requires iteration over all
subgraphs and comparison of the data conditions for all children.
In a second step, we iterate over all optional actions that have
not been treated before.

Example. For our running example, we first observe that
the XOR-complete subgraph that spans the actions og and od
can be treated as follows. The edge leading to action og is
annotated with the result rl, whereas the edge leading to action
od is annotated with the result rh. That is, the request to open
an account is granted only if the risk is considered to be low. If
the risk is high, the request is denied. In addition, we have to
deal with the optional action bl, which is not part of a child of
an XOR-complete subgraph. As such, we introduce two XOR-
gateways and annotate the edges as outlined above. Here, the
edge bypassing the action bl is annotated with ei ∨ ep since
the evaluation object must have a value other than ef to avoid
executing bl. However, due to the action edd which must have
occurred already, the object may only have value ef or ep.5 The
obtained annotated process templates is shown in Figure 5.

rl
rh

ef

ei v ep

Figure 5: Annotated process template synthesized for the exam-
ple.

7.3. Evaluation of the Synthesized Process Template
Process templates aim to support experts in getting a better

understanding of the compliance aspects and to discover miss-
ing or under-specified requirements. Such under-specification
is manifested in the process template in terms of semantical

5Attention! Then why is ei still here?

(ef ʌ rl) v
(ep ʌ rh) v
(ef ʌ rh)

ep ʌ rl

Figure 6: A compliant process template where bl and og are
exclusive and the conditions for their execution have been ad-
justed.

problems. Those problems can only be detected by human ex-
perts. In this section, we will further elaborate on the running
example to illustrate such problems. Using the process template
in Figure 5 as a basis of the discussion between compliance
expert and business expert, they identify that the template al-
lows for executing both black listing the client and granting
the request to open the account in the same trace. This is an
example of the aforementioned semantical problems caused by
under-specified compliance rules. The compliance expert re-
fines the set of constraints by indicating that black listing and
granting the request to open an account are contradictory, cf. the
CA relation in Section 3.2, formalized as G (og ⇒ G (¬bl))
and G (bl ⇒ G (¬og)). Repeating the steps of our approach
reveals that the adapted set of compliance rules yields a set of
traces that is data incomplete. This is explained based on the
two added constraints as follows. By forcing bl and og to be
exclusive, we implicitly require bl to be executed only with the
condition ef ∧ rh, while og is executed only with the condition
ep∧ rl. Other combinations of results are not considered. There
is no trace that addresses the situation where ef ∧ rl holds in
some state. This contradicts our requirement to execute either
og or od in each run. Since the condition ef ∧ rl enables neither
of them, it is not observed in any of the generated traces.

As a consequence, another adaptation of our set of com-
pliance requirements is needed. One solution is to update
the conditions under which the actions og, od, and bl are ex-
ecuted, i.e., G (og ⇒ ep ∧ rl), G (od ⇒ (ef ∨ rh)), and
G (bl ⇒ (ef ∨ rh)). With these updated constraints, another
iteration of behavior synthesis is started. This time, the gener-
ated set of traces shows data completeness. The final generated
process template is visualized in Figure 6.

When the regulation or the law changes, many related rules
have to be modified, added, or deleted, and consequently the
process template will be different. Moreover, any process mod-
els refined from these templates will have to be adapted. Much
previous work has been done by a number of researchers to

15

investigate dynamic workflow changes, and many of them dealt
with the change by reconstructing graphs [39, 40, 41]. In our
approach, however, there is no need to worry about the correct-
ness of changed graphs, since we only need to change the rules
and the corresponding new graph of process templates will be
generated automatically. Our idea of combining logic and pro-
cess mining helps make the change easier for the user, since we
can also detect incorrect changes and check the properties of
the changed process by the same means. Iterations in enacting
the process template in our paper can be seen as small changes
in rules, and we have shown how the changed process template
is generated and evaluated. As future work, we will look for
methods to check if the current executing instance complies with
the changed process, and how to cope with changes that involve
too many rules. Those, however, are beyond the scope of this
paper.

8. Implementation

We created a prototypical implementation to validate our
approach. Figure 7 shows a snapshot of it. It relies on a speci-
fication of domain knowledge, such as activity results and con-
tradicting activities, which has to be defined once by a human
expert. When the domain knowledge is defined, we generate
the LTL encoding formulae automatically according to Table 1.
Then a set of compliance rules has to be defined by the human
expert to control the behavior synthesis and to enforce the seman-
tics of the domain knowledge. The user can check the rules that
have been entered, and those that are generated automatically in
the “LTL preview” tab. The theorem prover is implemented ac-
cording to Wolper’s method for checking LTL satisfiability [18].
If the rules are satisfiable, the graph-based tableaux method LTL
theorem prover generates the pseudomodel of all possible traces.
Next, our implementation extracts finite traces, which are shown
in the “Traces view” tab. Then the set of traces is analysed
against the correctness criteria in Section 5.3. The analysis of
traces is done by querying properties against the set of traces,
as described in Section 5.2. If the extracted traces pass the
quality tests, then the tool computes the order relations between
actions as in process mining by the same querying method, and
constructs an order relations graph. In contrast to our original
approach [10] which uses traditional process mining to analyse
traces and derive relations in the process, our new implementa-
tion to query the set of traces is from a logic perspective. That
is, we test the properties of the set of traces based on the seman-
tics of LTL. Since our encoding of the domain knowledge and
compliance rules are both in LTL, the new approach coherently
provides us with logical correctness, and can be easily extended
for further use. Finally, a first overview of the process template
is given using the approach of [10] with a GraphViz [43] based
visualization in the “Template view” tab. Further, artefacts to
generate the final template with the approach introduced in this
paper are also provided.

In case that our theorem prover returns unsatisfiability for the
domain knowledge and the rules, our implementation conducts
the inconsistency analysis in three phases to check the problems
in the domain knowledge, the rules, and the conjunction of them
respectively, cf. Section 4.4. For the first two phases, we provide

Figure 7: A snapshot of the process synthesis tool.

the user with three options to check the cause of inconsistency,
while in the last phase six options are enabled for the user to
choose from. Each of those options is realised by different
methods and thus gives different performance and results. The
unsatisfiable core is reported in the “Unsatisfiable rules” tab.

In case that traces do not pass checks described in Sec-
tion 5.3, the problems found are reported on the “Analysis result”
tab. At that point, the user is offered the option to apply the
remedy strategies discussed in Section 6. In particular, our tool
will check for vacuously satisfied rules and the result is reported
in “Vacuously satisfied rules” tab.

There is the potential for a state space explosion, especially
since the additional constraints of the process are unrestricted
logical formulae. Even without pathological constraints, if there
is a lot of freedom or many non-local conditions then the satisfi-
ability checking phase can take a considerable amount of time.
The once constraint helps limit this, and too much freedom can
often be a sign that other conditions have been omitted. We aim
to evaluate these issues in further case studies.

9. Feasibility of Our Approach

To evaluate the applicability and feasibility of our approach,
two further examples and their run times are shown in the ap-
pendix. Interestingly, some technical details that affect the per-
formance of our approach can be observed in those examples.

In Appendix A.1, a total of 593 traces are generated out
of the set of rules, while in the second example less than 10
traces are generated. Consequently the trace evaluation and
process mining take rather long in Appendix A.1. This is
mainly caused by a lot of rules with F. In theorem proving, if
there is an ∧ operator, the child state contains both conjuncts,
whereas to deal with an ∨ operator, we must split the current
state into two children where each contains a disjunct. That
is, when there are many ∨ operators, the search will have to
go through a large number of branches in the worst case, but
for ∧ operators the search goes linearly. Temporal operators F,

16

U behave like ∨, and G, B behave like ∧. This is the reason
that Appendix A.1 contains more traces than the other exam-
ple. For instance, if we add G(arc ⇒ G ¬rej) (which equals
to G(¬arc ∨ G ¬rej)) in Appendix A.1, the theorem prover
spends 12 seconds but generates 5298 traces. As a result, it
takes 2.5 seconds, which is longer than in the reported exam-
ples, to evaluate and process-mine those traces. The result of
the process template, however, is the same as the one we have
shown in Appendix A.1. Furthermore, adding more rules with
G and B sometimes helps the theorem prover to skip unsatis-
fiable paths earlier when searching. For example, if we add
rules {(odr B crc), (crc B ivc), (ivc B evl)} in Appendix
A.1, the theorem prover would give the same answer and gen-
erate an equivalent set of traces in 0.29 seconds. Note that
G (action1 ⇒ X action2) indicates that if action1 occurs,
action2 must occur exactly afterwards. But this allows action2

to appear on a trace solely. The rule (action1 B action2) forces
that if action2 is on a trace, then action1 must be executed be-
fore that. So the two rules together restrict the sequence of
execution that we intend to model. But in Appendix A.1, the
structure of the process is rather fixed. It happens to be the case
that in all rules of this form, action2 cannot occur solely on a
trace. Therefore, even though we do not add rules with B , the
result is the same.

As one can see, the time cost for solving the problem some-
times depends on how the rules are interpreted and how they are
formulated in LTL. Thus, it is difficult to give a conclusion of
run time analysis and scalability, since if the rules are not well-
defined we might get a false negative answer. The intelligent
way to formulate compliance rules can be a very important and
interesting aspect of further work.

Although we cannot claim our approach to be scalable with-
out further extensive experimental evaluation, the time costs for
examples in the appendix are all within reasonable tolerance.
The last two examples are inspired by those in previous papers,
so their validity and practicality should be inherited. In all, the
examples exhibited that our approach is not ad-hoc, but can
be used to model small example processes in other areas in a
relatively short time.

10. Related Work

Compliance checking of business process models with a
focus on execution order constraints has been approached from
two angles: namely compliance by design and compliance
checking of existing models. The latter has been tackled us-
ing model checking techniques [5, 4, 44]. Our work follows a
compliance by design approach that has also been advocated
in [7, 2, 3, 45, 46, 8]. Close to our work, the authors of [2, 7]
employ temporal deontic assignments to specify what can or
must be done at a certain point in time and synthesize a process
template from these assignments. In contrast to our work, how-
ever, the approach is limited to temporal dependencies between
activity executions and the underlying logic requires an encoding
of these dependencies via explicit points in time. Another ap-
proach to synthesize compliant processes was introduced in [8].
The authors employ a set of compliance patterns expressed in
LTL. For each pattern a finite state automaton (FSA) is defined.

To synthesize a process, the FSAs of the involved patterns are
composed. Next, the user is required to select for each composi-
tion an execution path in order to synthesize the process. That
approach is able to generate processes with sequence and choice
only. Moreover, it does not consider data flow aspects in the
synthesized process. In [9], the authors develop an approach to
extract process structure from software requirements expressed
in the Service Oriented Requirements Language (SORL). The
language provides a set of patterns which are similar to loop,
sequence, and choice patterns of business processes. Thus, the
extraction of the control structure of the process is rather straight-
forward. Also, under the heading “Object Depend”, the authors
mention that their approach can model processes which make
decisions, but only where those decisions are based on binary
results of objects (usually “true” or “false”). Compared to their
work, we can generate process templates with structures that
have non-local data conditions and multi-valued (more than two)
data conditions. Further, without explicit data-flow, most of
the related papers attempted to model choices by using extra
actions [13], which complicate the process model. Some papers
mention the choices in the description of their process, but those
conditions are not presented in the process model [30], and thus
might confuse the user when making decisions.

As we mentioned before, our aim is to produce a complaint
process template. The work in [6] is interesting as it is comple-
mentary to our work. In [6], the authors have proposed a layered
refinement process whose input is a compliant process template
and its output is a fully refined compliant executable process.

Another interesting complementary work to ours is about
extraction of compliance requirements from legal documents.
These approaches are surveyed in [47]. According to the survey,
a plethora of techniques have been used to extract and formal-
ize compliance requirements from legal documents. What is
interesting is that some techniques extract and formalize some
requirements. This could form the input to our approach where
we produce process templates out of these requirements. An-
other interesting aspect that has been covered by the survey is
law-compliant business process templates. The surveyed pa-
pers show that the effort is mainly to manually develop a set
of compliant business process templates out of legal require-
ments. Compared to our approach, we have the advantage of
semi-automating this step.

Related to our approach to process model synthesis is work
on process mining, which aims at automatic construction of a
process model from a set of logs [48, 34, 49]. We adapted the
α-algorithm [34], a standard mining approach, for our purposes.
Besides the commonalities, there are some important differ-
ences between process mining and process template synthesis.
We consider control flow routing based on data values. This
aspect is often neglected in process mining algorithms. Only
recently, time information and data context have been consid-
ered when predicting the continuation of a trace based on its
current state [50, 51]. Further, process mining approaches have
to be robust against incorrect data (log noise). As we derive a
model from artificially generated traces, this is not an issue for
our approach.

Work on declarative business process modeling is also re-
lated to our work. The authors of [13, 12] propose to model

17

processes by specifying a set of execution ordering constraints
on a set of activities. These constraints are mapped onto LTL
formulas; which are used to generate an automaton that is used
to both guide the execution and monitor it. That is similar to our
approach of generating a pseudomodel. Recently, the authors
also showed how finite traces that respect interleaving seman-
tics can be extracted from a set of LTL constraints [14]. The
major difference from our work is that [14] does not model data
constraints as we do. They also change the semantics of LTL
rather than by using standard LTL as we do. Finally, we initially
tried the approach of extracting Büchi automata from our LTL
specifications for our example, but found that the automata ap-
proach required hours to return the automata whereas our LTL
satisfiability checker returns a pseudomodel in a few seconds.

Model synthesis is also a relevant issue in model driven de-
velopment. Synthesis of behavioral models out of scenario-based
models has received attention from researchers [32]. A similar
problem to the notion of implied runs, cf. Section 6.1, has been
identified as implied scenarios where implicit behavior appears
due to under-specification. In our work, we take the synthesis
one step ahead and produce a process model rather than stopping
at the state machine step. Also, the issue of requirements con-
sistency checking is relevant. However, inconsistency appears
in the form of negative implied scenarios, i.e., unwanted inter-
actions among interacting objects. Some of these approaches,
e.g., [52], reduce the detection of inconsistency to a model check-
ing problem. On the one hand, the sequence charts for different
scenarios represent the behavior of the system. On the other
hand, the user requirements represent properties to be checked.
Consistency is achieved when the system behavior satisfies the
user requirements. In our work, the only source of specification
is the set of compliance rules. Thus, our inconsistency analysis
is basically checking the satisfiability of the LTL specification.

The issue of identifying causes of unsatisfiability has also
been an issue in the formal verification field. In [53], the au-
thors propose an approach to check satisfiability of PSL, a super
language of LTL, as well as identification of causes of unsat-
isfiability. First, they consider Boolean abstraction over the
specification and check whether the conflict occurs due to the
Boolean formulation, e.g., p ∧ ¬p. If this is not the case, they
reduce the satisfiability checking problem to a model checking
one and based on Bounded model checking, they identify the
causes of the inconsistency. Still, the identification of vacuous
satisfiability is not considered.

11. Conclusion

In this paper, we introduced an approach to synthesize busi-
ness process templates out of a set of compliance rules expressed
in LTL. We also showed that extra domain-specific knowledge
is required to decide consistency of such requirements and in-
troduced an LTL encoding for compliance rules and domain
knowledge. This was used to generate traces from which a
process template is constructed.

Our approach addresses control- and data-flow aspects of
compliance rules, whereas most of the existing work focuses on
control-flow aspects only. The consideration of data-flow aspects
comes with new challenges. Data dependencies may show rather

complex interactions that are hard to handle in the first place.
We cope with these challenges following an iterative approach –
the required knowledge is built incrementally each time incon-
sistencies or semantical issues are detected. Our approach is
comprehensive in the sense that it provides resolution strategies
that support experts in resolving these issues. In particular, we
showed how inconsistent subsets of the given knowledge base
are identified. Also, we addressed the case when correctness
criteria for traces are not met.

However, we also have to reflect on certain limitations of our
approach. In particular, the model synthesis from a set of traces
is limited to block-structured process models. Even though it is
desirable to synthesize block-structured models, there may be
settings in which this is not possible, but in which an inherently
graph-structured process model would still be reasonable to use
for negotiation between business experts and compliance experts.
Note that we explicitly decided against the direct application
of the alpha-mining algorithm (which is not limited to block-
structured models) in order to be able to consider direct and
indirect data dependencies. Those are of crucial importance
for creating shared understanding on the business operations
between business experts and compliance experts. In future
work, however, we aim to address this limitation.

Further, we argued that while compliance rules rarely ex-
plicitly forbid the repetition of activity execution, it is often
implicitly intended, and useful for clarity. Hence, by default we
forbid repetitive behavior, which also helps to keep the gener-
ated process templates concise. However, there may be cases in
which compliance requirements relate to the number of allowed
executions of an activity. Further work is needed to extend our
approach to cope with such requirements.

Future work also includes the application of our approach in
case studies. In this work, we presented a prototypic implemen-
tation of the complete approach. However, many applicability
aspects can only be evaluated for a concrete compliance setting.
For instance, the amount of underspecification that needs to be
addressed as part of the iterative processing and the amount of
negotiation needed between compliance and business experts
influences the applicability of our approach, but those highly de-
pend on the concrete process and compliance requirements. As
part of that, it may be necessary to extend the approach to also
consider constraints on role resolution for generating process
templates.

References

[1] Sarbanes-Oxley Act of 2002, US Public Law 107-204, 2002.
[2] S. Goedertier, J. Vanthienen, Designing compliant business processes

with obligations and permissions, in: J. Eder, S. Dustdar (Eds.), Business
Process Management Workshops, Vol. 4103 of Lecture Notes in Computer
Science, Springer, 2006, pp. 5–14.

[3] R. Lu, S. Sadiq, G. Governatori, Compliance Aware Business Process
Design, in: BPM Workshops, Vol. 4928 of LNCS, Springer, 2007, pp.
120–131.

[4] A. Förster, G. Engels, T. Schattkowsky, R. Van Der Straeten, Verification
of Business Process Quality Constraints Based on VisualProcess Patterns,
in: TASE, IEEE Computer Society, 2007, pp. 197–208.

[5] A. Awad, M. Weidlich, M. Weske, Visually specifying compliance rules
and explaining their violations for business processes, J. Vis. Lang. Com-
put. 22 (1) (2011) 30–55.

[6] D. Schleicher, T. Anstett, F. Leymann, D. Schumm, Compliant business
process design using refinement layers, in: R. Meersman, T. S. Dillon,

18

P. Herrero (Eds.), OTM Conferences (1), Vol. 6426 of Lecture Notes in
Computer Science, Springer, 2010, pp. 114–131.

[7] S. Goedertier, J. Vanthienen, Compliant and Flexible Business Processes
with Business Rules, in: BPMDS, Vol. 236 of CEUR Workshop Proceed-
ings, CEUR-WS.org, 2006.

[8] J. Yu, Y. Han, J. Han, Y. Jin, P. Falcarin, M. Morisio, Synthesizing service
composition models on the basis of temporal business rules, J. Comput.
Sci. Technol. 23 (6) (2008) 885–894.

[9] J. Tian, K. He, C. Wang, H. Chen, An approach to generation of process-
oriented requirements specification, JSEA 2 (1) (2009) 13–19.

[10] A. Awad, R. Goré, J. Thomson, M. Weidlich, An iterative approach for
business process template synthesis from compliance rules, in: Mouratidis
and Rolland [55], pp. 406–421.

[11] V. Padmanabhan, G. Governatori, S. Sadiq, R. Colomb, A. Rotolo, Process
modelling: the deontic way, in: APCCM ’06: Proceedings of the 3rd
Asia-Pacific conference on Conceptual modelling, Australian Computer
Society, Inc., Darlinghurst, Australia, Australia, 2006, pp. 75–84.
URL http://portal.acm.org/citation.cfm?id=1151864

[12] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, DECLARE: Full
Support for Loosely-Structured Processes, in: EDOC, IEEE Computer
Society, 2007, pp. 287–300.

[13] M. Pesic, W. M. P. van der Aalst, A Declarative Approach for Flexible
Business Processes Management, in: BPM Workshops, Vol. 4103 of
LNCS, Springer, 2006, pp. 169–180.

[14] M. Pesic, D. Bosnacki, W. M. P. van der Aalst, Enacting declarative
languages using LTL: Avoiding errors and improving performance, in:
SPIN, Vol. 6349 of LNCS, Springer, 2010, pp. 146–161.

[15] A. Pnueli, The temporal logic of programs, in: SFCS, IEEE
Computer Society, Washington, DC, USA, 1977, pp. 46–57.
doi:http://dx.doi.org/10.1109/SFCS.1977.32.

[16] B. Hansson, An analysis of some deontic logics, Nos 3 (4) (1969) pp.
373–398.
URL http://www.jstor.org/stable/2214372

[17] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press,
1999.

[18] P. Wolper, The tableau method for temporal logic: an overview, Logique
et Analyse 110-111 (1985) 119–136.

[19] P. Wolper, Temporal logic can be more expressive, Information and Control
56 (1983) 72–99.

[20] A. P. Sistla, E. M. Clarke, The complexity of proposi-
tional linear temporal logics, J. ACM 32 (1985) 733–749.
doi:http://doi.acm.org/10.1145/3828.3837.
URL http://doi.acm.org/10.1145/3828.3837

[21] E. Clarke, Model checking, in: S. Ramesh, G. Sivakumar (Eds.), Foun-
dations of Software Technology and Theoretical Computer Science, Vol.
1346 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
1997, pp. 54–56, 10.1007/BFb0058022.
URL http://dx.doi.org/10.1007/BFb0058022

[22] Financial Services Commission, Guidelines on anti-money laundering &
counter-financing of terrorism (2007).
URL http://www.natlaw.com/interam/jm/bk/sp/spjmbk00008.pdf

[23] F. Baader, R. Peñaloza, Automata-based axiom pinpointing, J. Autom.
Reason. 45 (2010) 91–129. doi:http://dx.doi.org/10.1007/s10817-010-
9181-2.
URL http://dx.doi.org/10.1007/s10817-010-9181-2

[24] V. Schuppan, Towards a notion of unsatisfiable cores for LTL, Fundamen-
tals of Software Engineering (2010) 129145.
URL http://www.springerlink.com/index/46l540451323v161.pdf

[25] F. Hantry, M.-S. Hacid, Handling Conflicts in Depth-First-Search for
LTL Tableau to Debug Compliance Based Languages, in: EPTCS (Ed.),
FLACOS, 2011.
URL http://liris.cnrs.fr/publis/?id=5197

[26] J. Bailey, P. J. Stuckey, Discovery of minimal unsatisfiable subsets of
constraints using hitting set dualization, in: In Proc. of the 7th International
Symposium on Practical Aspects of Declarative Languages (PADL05,
Springer, 2005, pp. 174–186.

[27] I. Lynce, J. P. Marques-Silva, On computing minimum unsatisfiable cores,
in: International Symposium on Theory and Applications of Satisfiability
Testing, 2004, pp. 305–310.
URL http://eprints.ecs.soton.ac.uk/12252/

[28] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider
(Eds.), The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, 2003.

[29] J. Marques-Silva, Minimal unsatisfiability: Models, algo-
rithms and applications (invited paper), Multiple-Valued
Logic, IEEE International Symposium on 0 (2010) 9–14.
doi:http://doi.ieeecomputersociety.org/10.1109/ISMVL.2010.11.

[30] W. M. P. van der Aalst, M. Pesic, H. Schonenberg, Declarative workflows:
Balancing between flexibility and support, Computer Science - R&D 23 (2)
(2009) 99–113.

[31] A. Weijters, W. van der Aalst, Rediscovering workflow models from event-
based data using little thumb, Integrated Computer-Aided Engineering 10
(2001) 2003.

[32] H. Liang, J. Dingel, Z. Diskin, A comparative survey of scenario-based
to state-based model synthesis approaches, in: J. Whittle, L. Geiger,
M. Meisinger (Eds.), SCESM, ACM, 2006, pp. 5–12.

[33] I. Krka, From requirements to partial behavior models: an iterative ap-
proach to incremental specification refinement, in: G.-C. Roman, K. J.
Sullivan (Eds.), SIGSOFT FSE, ACM, 2010, pp. 341–344.

[34] W. M. P. van der Aalst, T. Weijters, L. Maruster, Workflow mining: Dis-
covering process models from event logs, IEEE Trans. Knowl. Data Eng.
16 (9) (2004) 1128–1142.

[35] A. Polyvyanyy, L. Garcı́a-Bañuelos, M. Dumas, Structuring acyclic pro-
cess models, in: R. Hull, J. Mendling, S. Tai (Eds.), BPM, Vol. 6336 of
Lecture Notes in Computer Science, Springer, 2010, pp. 276–293.

[36] A. Polyvyanyy, L. Garcı́a-Bañuelos, D. Fahland, M. Weske, Maximal
structuring of acyclic process models, CoRR abs/1108.2384.

[37] R. Laue, J. Mendling, Structuredness and its significance for correctness of
process models, Inf. Syst. E-Business Management 8 (3) (2010) 287–307.

[38] R. M. McConnell, F. de Montgolfier, Linear-time modular decomposition
of directed graphs, Discrete Applied Mathematics 145 (2) (2005) 198–209.

[39] M. Reichert, P. Dadam, Adeptflex-supporting dynamic changes of work-
flows without losing control, Journal of Intelligent Information Systems,
Special Issue on Workflow Management Systems 10 (2) (1998) 93–129.
URL http://dbis.eprints.uni-ulm.de/301/

[40] C. Ellis, K. Keddara, G. Rozenberg, Dynamic change within workflow
systems, in: Proceedings of conference on Organizational computing
systems, COCS ’95, ACM, New York, NY, USA, 1995, pp. 10–21.
doi:http://doi.acm.org/10.1145/224019.224021.
URL http://doi.acm.org/10.1145/224019.224021

[41] M. Reichert, P. Dadam, A framework for dynamic changes in workflow
management systems, in: Database and Expert Systems Applications,
1997. Proceedings., Eighth International Workshop on, 1997, pp. 42 –48.
doi:10.1109/DEXA.1997.617231.

[42] A. Awad, R. Goré, J. Thomson, M. Weidlich, An iterative approach for
business process template synthesis from compliance rules, in: Mouratidis
and Rolland [55], pp. 406–421.

[43] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, G. Woodhull, Graphviz
- open source graph drawing tools, in: Graph Drawing, 2001, pp. 483–484.

[44] Y. Lui, S. Müller, K. Xu, A Static Compliance-checking Framework for
Business Process Models, IBM SYSTEMS JOURNAL 46 (2) (2007) 335–
362.

[45] Z. Milosevic, S. Sadiq, M. Orlowska, Translating Business Contract into
Compliant Business Processes, in: EDOC, IEEE Computer Society, 2006,
pp. 211–220.

[46] K. Namiri, N. Stojanovic, Pattern-Based Design and Validation of Business
Process Compliance, in: OTM Conferences (1), Vol. 4803 of LNCS,
Springer, 2007, pp. 59–76.

[47] S. Ghanavati, D. Amyot, L. Peyton, A systematic review of goal-oriented
requirements management frameworks for business process compliance,
in: Fourth International Workshop on Requirements Engineering and Law,
IEEE, 2011, pp. 25–34.

[48] R. Agrawal, D. Gunopulos, F. Leymann, Mining process models from
workflow logs, in: EDBT, Vol. 1377 of LNCS, Springer, 1998, pp. 469–
483.

[49] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F. van
Dongen, A. K. A. de Medeiros, M. Song, H. M. W. E. Verbeek, Business
process mining: An industrial application, Inf. Syst. 32 (5) (2007) 713–
732.

[50] H. Schonenberg, J. Jian, N. Sidorova, W. M. P. van der Aalst, Business
trend analysis by simulation, in: CAiSE [54], pp. 515–529.

[51] W. M. P. van der Aalst, M. Pesic, M. Song, Beyond process mining: From
the past to present and future, in: CAiSE [54], pp. 38–52.

[52] K. G. Larsen, S. Li, B. Nielsen, S. Pusinskas, Scenario-based analysis and
synthesis of real-time systems using uppaal, in: DATE, IEEE, 2010, pp.
447–452.

19

[53] A. Cimatti, M. Roveri, V. Schuppan, S. Tonetta, Boolean abstraction for
temporal logic satisfiability, in: CAV, Vol. 4590 of LNCS, Springer, 2007,
pp. 532–546.

[54] Advanced Information Systems Engineering, 22nd International Confer-
ence, CAiSE 2010, Hammamet, Tunisia, June 7-9, 2010. Proceedings, Vol.
6051 of LNCS, Springer, 2010.

[55] H. Mouratidis, C. Rolland (Eds.), Advanced Information Systems En-
gineering - 23rd International Conference, CAiSE 2011, London, UK,
June 20-24, 2011. Proceedings, Vol. 6741 of Lecture Notes in Computer
Science, Springer, 2011.

Appendix A. Further Examples

In the appendix, we present further examples modelled using
our approach. On the one hand, the examples demonstrate the
applicability and feasibility of our method. On the other hand,
we provide run time information to illustrate practicality from
the performance perspective.

Appendix A.1. The Order and Purchase Process
This example is taken from the paper by Ellis et al. [40]. An

office procedure for order processing within a typical electronics
company. When a customer requests (odr) by mail, or in person,
an electronic part, this is the beginning of a job. A form is filled
out by the order administrator; the job is sent to credit check
(crc), and then to inventory check (ivc). After the evaluation
(evl), either a rejection letter (rej) is sent to the customer when
the evaluation fails (ef), or the order is approved (apr) when
the evaluation passes (ep) and then sent to shipping (shp) and
billing (bil). The shipping department will actually cause the
part to be sent to the customer; the billing department will see
that the customer is sent a bill, and that it is paid. In the end of a
successful purchase, the transaction will be archived (arc).

From their description of the process, we extract the follow-
ing actions and results. Note that there is no results in their orig-
inal process, but since actions “approval” and “rejection-letter”
are straightforward, there ought to be no misunderstandings
when executing this process. In the next examples, however, we
will illustrate how our data-flow helps the user to make deci-
sions.
Actions = {odr, crc, ivc, evl, apr, rej, shp, bil, arc}
odr: order entry
crc: credit check
ivc: inventory check
evl: evaluation
apr: approval
rej: send rejection letter
shp: shipping
bil: billing
arc: archiving

Results = {ei, ep, ef}
ei: evaluation is initial
ep: evaluation passed
ef : evaluation failed

To adapt to our approach, the following rules are translated into
LTL:

G(start⇒ X odr)
first step, the customer requests the order

G(odr ⇒ X crc)
then conduct the credit check

G(crc⇒ X ivc)
then conduct the inventory check

G(ivc⇒ X evl)
then evaluate the above checks

G(evl ∧ ep⇒ X apr) ∧G(apr ⇒ ep)
if evaluation is passed, approve the order

G(evl ∧ ef ⇒ X rej) ∧G(rej ⇒ ef)
evaluation is failed, reject the order

G(apr ⇒ F shp)
if the order is approved, the item will be shipped

G(apr ⇒ F bil)
if the order is approved, the bill will be sent

G(shp⇒ F arc)
the transaction will be archived after shipment

G(bil⇒ F arc)
archiving is after the bill being sent also

G(rej ⇒ G ¬arc)
rejected order should not be archived

We do not add G(arc ⇒ G ¬rej), because the rest of the
rules determine that arc cannot occur before rej. The reason
is, if the evaluation is failed, rej must be the first action to be
executed (because of the next operator in G(evl∧ef ⇒ X rej)).
Action rej cannot be executed if the evaluation is passed, and
the execution sequence before the evaluation is fixed linearly.
Thus it is impossible for arc to appear before rej on any traces.

The order relations graph is shown in Figure A.8 and the
process template is shown in FigureA.9. The time to do the
satisfiability check and extract the traces for this example was
8.21(s). Doing the trace evaluation and mining took 0.35(s).

Appendix A.2. The Hospital Treatment Process
This example is a modified version of the hospital example

used by van der Aalst et al. [30]. The original process model
is designed in DECLARE, which is a workflow management
system for flexible processes. Thus the structure of the original
process model contains too many traces and is hard to be pre-
sented as a BPMN-like graph. So here we modify the process to
adapt to our notation.

Initially, a specialist performs activity examination (exm).
If the specialist diagnoses the absence of a fracture during ex-
amination, then x-ray (xry) is not necessary, thus sling (slg) is
enough for the treatment. If x-ray results in a simple fracture
(sf), then a cast (cst) is enough; if unstable fracture (us) is
observed, then fixation (fix) is preferred; otherwise if the result
is heavy fracture (hf), then the patient should be treated with
surgery (sgy), and rehabilitation (rhb) is suggested after that.
One of the treatments fixation, surgery, sling, and cast must be
given to the patient before he can be discharged from hospital
(dcg).

In DECLARE, data-flow is neglected, so even though they
briefly mention the preferred conditions to make choices, the
results are not reflected in their declarative model. By contrast,
we identify those results and illustrate how we can handle ternary
valued data-flow in this example. The set of actions and the set

20

odr crcstart evl

apr

rej end

bil

ivc

shp

arc

Figure A.8: Order relations graph of the order and purchase process.

odr crc evl

ep

apr

rej

bil

ivc

shp

arc

ef

Figure A.9: Process template graph of the order and purchase process.

of results are shown respectively as below.
Actions = {exm, xry, fix, sgy, cst, slg, rhb, dcg}
exm: examination
xry: x-ray
fix: fixation
sgy: surgery
cst: cast
slg: sling
rhb: rehabilitation
dcg: discharge from hospital
Results = {ei, nf, fc, fi, sf, us, hf}
ei: examination is initial
nf : not fractured
fc: fractured
fi: fracture type is initial
sf : simple fracture
us: unstable fracture
hf : heavy fracture

To fit into our interpretation of the process, we define the follow-
ing rules in LTL:

G(start⇒ X exm)
first, examine the patient

G(exm ∧ fc⇒ X xry) ∧G(xry ⇒ fc)
if fracture detected, scan x-ray

G(exm ∧ nf ⇒ X slg) ∧G(slg ⇒ nf)
if not fractured, sling is enough

G(xry ∧ sf ⇒ X cst) ∧G(cst⇒ sf)
if simple fracture detected, execute cast

G(xry ∧ us⇒ X fix) ∧G(fix⇒ us)
if unstable fracture detected, execute fixation

G(xry ∧ hf ⇒ X sgy) ∧G(sgy ⇒ hf)
if heavy fracture detected, execute surgery

G(sgy ⇒ X rhb) ∧ (sgy B rhb)
after surgery, the patient needs rehabilitation

G((fix ∨ cst ∨ sgy ∨ slg)⇒ F dcg)
one treatment must be given before discharge

Since data-flow is made explicit in our approach, conditions
under which the affected actions take place are clear to the user.
We do not claim that the process above is better than the original
one, but we emphasise the fact that data-flow helps the user to
make decisions, as well as keeping the process model concise.

The order relations graph is shown in Figure A.10 and the
process template is shown in Figure A.11. The time to do the
satisfiability check and extract the traces for this example was
16.40(s). Doing the trace evaluation and mining took 0.08(s).

21

exm xry

slg

dcg

cst

start sgy rhb end

fix

Figure A.10: Order relations graph of the hospital treatment process.

exm xry

slgnf

dcg

cst

hf

sgy rhb

fixus

fc sf

Figure A.11: Process template graph of the hospital treatment process.

22

